您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 45-53.doi: 10.6040/j.issn.1672-3961.0.2016.328

• • 上一篇    下一篇

基于自适应终端滑模控制器的机械手跟踪控制

唐庆顺,金璐,李国栋,吴春富   

  1. 龙岩学院机电工程学院, 福建 龙岩 364012
  • 收稿日期:2016-08-23 出版日期:2016-10-20 发布日期:2016-08-23
  • 作者简介:唐庆顺(1965— ),男,福建仙游人,副教授,学士,主要研究方向为智能机器人与机电一体化.E-mail:qingshun951128@163.com
  • 基金资助:
    国家自然科学基金资助项目(61375084);福建省自然科学基金面上资助项目(2015J01268);福建省教育厅科技计划资助项目(JK2014049);福建省科技厅引导性资助项目(2016H0026);福建省自然科学基金高校专项资助项目(2012D103)

Robotic manipulators tracking control based on adaptive terminal sliding mode controller

TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu   

  1. School of Mechanical and Electrical Engineering, Longyan College, Longyan 364012, Fujian, China
  • Received:2016-08-23 Online:2016-10-20 Published:2016-08-23

摘要: 针对具有不确定性的机械手轨迹跟踪控制问题,提出一种自适应二阶终端滑模控制器设计方法。设计一类非线性不确定系统的自适应二阶终端滑模算法,使得不连续符号函数包含在控制微分项,实际控制作用连续;采用自适应律克服不确定性上界未知问题,基于Lyapunov方法证明系统稳定性;针对机械手轨迹跟踪问题,基于所提出控制方法设计机械手自适应终端滑模控制方案;通过对双关节机械手轨迹跟踪仿真研究,验证所提出控制策略的有效性。

关键词: 轨迹跟踪, 二阶滑模, 机械手, 自适应, 控制, 终端滑模

Abstract: A self-adaptive second-order terminal sliding mode controller was proposed to achieve trajectory tracking control of robotic manipulators with uncertainties. The self-adaptive second-order terminal sliding mode algorithm was designed for a class of nonlinear uncertain system. The discontinuous sign function was included in first time derivative of control item, and the actual control input was continuous. The self-adaptive law method was employed to conquer system uncertainties, of which the upper bounds were unknown in advance, and the system stability was proved based on Lyapunov criterion. The robotic manipulators self-adaptive terminal sliding mode trajectory tracking control scheme was proposed. Simulation results for two-link robotic manipulator demonstrated the effectiveness of the proposed control strategy.

Key words: self-adaptive, terminal sliding mode, second-order sliding mode, robotic manipulators, trajectory tracking, control

中图分类号: 

  • TP273
[1] GALICKI M. Finite-time control of robotic manipulators[J]. Automatica, 2015, 51:49-54.
[2] VERRELLI C M, PIROZZI S, TOMEI P, et al. Linear repetitive learning controls for robotic manipulators by padé approximants[J]. IEEE Transactions on Control Systems Technology, 2015, 23(5):2063-2070.
[3] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3):28-34. MENG Jian, LI Yibin, LI Bin. Bound gait controlling method of quadruped robot [J]. Journal of School of Shandong University(Engineering Science), 2015, 45(3):28-34.
[4] PARK C W. Robust stable fuzzy control via fuzzy modeling and feedback linearization with its applications to controlling uncertain single-link flexible joint manipulators[J]. Journal of Intelligent and Robotic Systems, 2004, 39(2):131-147.
[5] NIKDEL N, NIKDEL P, BADAMCHIZADEH M A, et al. Using neural network model predictive control for controlling shape memory alloy-based manipulator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3):1394-1401.
[6] LI Z, YANG C, SU C Y, et al. Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4):1044-1056.
[7] LI Z, DENG S, SU C Y, et al. Decentralized adaptive control of cooperating robotic manipulators with disturbance observers[J]. IET Control Theory & Applications, 2014, 8(7):515-521.
[8] 翟伟娜, 葛运旺, 宋书中. 基于改进趋近律的机械手滑模控制[J]. 信息与控制, 2014, 43(3):300-305. ZHAI Weina, GE Yunwang, SONG Shuzhong. Sliding mode control for robotic manipulators based on the improved reaching Law [J]. Information and Control, 2014, 43(3):300-305.
[9] LI F, WU L, SHI P, et al. State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties [J]. Automatica, 2015, 51:385-393.
[10] 刘向杰,韩耀振. 基于连续高阶模滑的多机电力系统励磁控制[J]. 山东大学学报(工学版), 2016, 46(2): 64-71. LIU Xiangjie, HAN Yaozhen. Multi-machine power system excitation control based on continuous higher-order sliding mode[J]. Journal of School of Shandong University(Engineering Science), 2016, 46(2):64-71.
[11] HAN Y, LIU X. Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems [J]. ISA Transactions, 2016, 62: 193-201.
[12] LIU X, HAN Y. Decentralized multi-machine power system excitation control using continuous higher-order sliding mode technique [J]. International Journal of Electrical Power & Energy Systems, 2016, 82: 76-86.
[13] YANG J, SU J, LI S, et al. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach [J]. IEEE Transactions on Industrial Informatics, 2014, 10(1): 604-614.
[14] 张德江, 张袅娜, 冯勇. 参数不确定柔性机械手的快速终端滑模控制[J]. 控制与决策, 2010, 25(3):433-436. ZHANG Dejiang, ZHANG Niaona, FENG Yong. Fast terminal sliding mode control for flexible manipulators with uncertain parameters[J]. Control and Decision, 2010, 25(3):433-436.
[15] JIN M, LEE J, CHANG P H, et al. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(9):3593-3601.
[16] WANG L, CHAI T, ZHAI L. Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics [J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3296-3304.
[17] FENG Y, YU X, MAN Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167.
[18] MONDAL S, MAHANTA C. Adaptive integral higher order sliding mode controller for uncertain systems[J]. Journal of Control Theory and Applications, 2013, 11(1): 61-68.
[19] PLESTAN F, SHTESSEL Y, BREGEAULT V, et al. New methodologies for adaptive sliding mode control [J]. International Journal of Control, 2010, 83(9): 1907-1919.
[20] MOHAMMADI A, TAVAKOLI M, MARQUEZ H J, et al. Nonlinear disturbance observer design for robotic manipulators [J]. Control Engineering Practice, 2013, 21(3): 253-267.
[21] ZHAO D, ZHU Q, LI N, et al. Synchronized control with neuro-agents for leader—follower based multiple robotic manipulators [J]. Neurocomputing, 2014, 124: 149-161.
[22] LIU H, ZHANG T. Neural network-based robust finite-time control for robotic manipulators considering actuator dynamics[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(2): 301-308.
[1] 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报 (工学版), 2018, 48(5): 32-37.
[2] 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报 (工学版), 2018, 48(5): 103-108.
[3] 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54.
[4] 李翔宇,赵志诚,王文逾. 基于反向解耦的PWM整流器分数阶内模控制[J]. 山东大学学报(工学版), 2018, 48(4): 109-115.
[5] 吴华春,谢思源,陈昌皓. 磁悬浮作动器的串级PID控制设计与试验[J]. 山东大学学报(工学版), 2018, 48(4): 88-93.
[6] 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9.
[7] 王琦,孙竹梅,刘少虹,白建云. 基于现场总线兼容技术的除尘系统一体化改造[J]. 山东大学学报(工学版), 2018, 48(4): 37-41.
[8] 马驰骋,郭宗和,刘灿昌,代祥俊,张希农,毛伯永. 变质量弹性梁结构动力学特性[J]. 山东大学学报(工学版), 2018, 48(4): 78-87.
[9] 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80.
[10] 崔恒斌,周瑾,董继勇,金超武. V-Gap度量磁悬浮推力轴承系统H控制器设计[J]. 山东大学学报(工学版), 2018, 48(2): 86-93.
[11] 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49.
[12] 张博涵,陈哲明,付江华,陈宝. 四轮独立驱动电动汽车自适应驱动防滑控制[J]. 山东大学学报(工学版), 2018, 48(1): 96-103.
[13] 宋正强,杨辉玲,肖丹. 基于在线粒子群优化方法的IPMSM驱动电流和速度控制器[J]. 山东大学学报(工学版), 2018, 48(1): 112-116.
[14] 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62.
[15] 张卫江,党宏社. 空间电压矢量对感应电机软起动控制策略[J]. 山东大学学报(工学版), 2017, 47(6): 70-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[4] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[5] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[6] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[9] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[10] 姚占勇,商庆森,赵之仲,贾朝霞 . 界面条件对半刚性沥青路面结构应力分布的影响[J]. 山东大学学报(工学版), 2007, 37(3): 93 -99 .