山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 45-53.doi: 10.6040/j.issn.1672-3961.0.2016.328
唐庆顺,金璐,李国栋,吴春富
TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu
摘要: 针对具有不确定性的机械手轨迹跟踪控制问题,提出一种自适应二阶终端滑模控制器设计方法。设计一类非线性不确定系统的自适应二阶终端滑模算法,使得不连续符号函数包含在控制微分项,实际控制作用连续;采用自适应律克服不确定性上界未知问题,基于Lyapunov方法证明系统稳定性;针对机械手轨迹跟踪问题,基于所提出控制方法设计机械手自适应终端滑模控制方案;通过对双关节机械手轨迹跟踪仿真研究,验证所提出控制策略的有效性。
中图分类号:
[1] GALICKI M. Finite-time control of robotic manipulators[J]. Automatica, 2015, 51:49-54. [2] VERRELLI C M, PIROZZI S, TOMEI P, et al. Linear repetitive learning controls for robotic manipulators by padé approximants[J]. IEEE Transactions on Control Systems Technology, 2015, 23(5):2063-2070. [3] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3):28-34. MENG Jian, LI Yibin, LI Bin. Bound gait controlling method of quadruped robot [J]. Journal of School of Shandong University(Engineering Science), 2015, 45(3):28-34. [4] PARK C W. Robust stable fuzzy control via fuzzy modeling and feedback linearization with its applications to controlling uncertain single-link flexible joint manipulators[J]. Journal of Intelligent and Robotic Systems, 2004, 39(2):131-147. [5] NIKDEL N, NIKDEL P, BADAMCHIZADEH M A, et al. Using neural network model predictive control for controlling shape memory alloy-based manipulator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3):1394-1401. [6] LI Z, YANG C, SU C Y, et al. Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4):1044-1056. [7] LI Z, DENG S, SU C Y, et al. Decentralized adaptive control of cooperating robotic manipulators with disturbance observers[J]. IET Control Theory & Applications, 2014, 8(7):515-521. [8] 翟伟娜, 葛运旺, 宋书中. 基于改进趋近律的机械手滑模控制[J]. 信息与控制, 2014, 43(3):300-305. ZHAI Weina, GE Yunwang, SONG Shuzhong. Sliding mode control for robotic manipulators based on the improved reaching Law [J]. Information and Control, 2014, 43(3):300-305. [9] LI F, WU L, SHI P, et al. State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties [J]. Automatica, 2015, 51:385-393. [10] 刘向杰,韩耀振. 基于连续高阶模滑的多机电力系统励磁控制[J]. 山东大学学报(工学版), 2016, 46(2): 64-71. LIU Xiangjie, HAN Yaozhen. Multi-machine power system excitation control based on continuous higher-order sliding mode[J]. Journal of School of Shandong University(Engineering Science), 2016, 46(2):64-71. [11] HAN Y, LIU X. Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems [J]. ISA Transactions, 2016, 62: 193-201. [12] LIU X, HAN Y. Decentralized multi-machine power system excitation control using continuous higher-order sliding mode technique [J]. International Journal of Electrical Power & Energy Systems, 2016, 82: 76-86. [13] YANG J, SU J, LI S, et al. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach [J]. IEEE Transactions on Industrial Informatics, 2014, 10(1): 604-614. [14] 张德江, 张袅娜, 冯勇. 参数不确定柔性机械手的快速终端滑模控制[J]. 控制与决策, 2010, 25(3):433-436. ZHANG Dejiang, ZHANG Niaona, FENG Yong. Fast terminal sliding mode control for flexible manipulators with uncertain parameters[J]. Control and Decision, 2010, 25(3):433-436. [15] JIN M, LEE J, CHANG P H, et al. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(9):3593-3601. [16] WANG L, CHAI T, ZHAI L. Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics [J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3296-3304. [17] FENG Y, YU X, MAN Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167. [18] MONDAL S, MAHANTA C. Adaptive integral higher order sliding mode controller for uncertain systems[J]. Journal of Control Theory and Applications, 2013, 11(1): 61-68. [19] PLESTAN F, SHTESSEL Y, BREGEAULT V, et al. New methodologies for adaptive sliding mode control [J]. International Journal of Control, 2010, 83(9): 1907-1919. [20] MOHAMMADI A, TAVAKOLI M, MARQUEZ H J, et al. Nonlinear disturbance observer design for robotic manipulators [J]. Control Engineering Practice, 2013, 21(3): 253-267. [21] ZHAO D, ZHU Q, LI N, et al. Synchronized control with neuro-agents for leader—follower based multiple robotic manipulators [J]. Neurocomputing, 2014, 124: 149-161. [22] LIU H, ZHANG T. Neural network-based robust finite-time control for robotic manipulators considering actuator dynamics[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(2): 301-308. |
[1] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报 (工学版), 2018, 48(5): 32-37. |
[2] | 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报 (工学版), 2018, 48(5): 103-108. |
[3] | 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54. |
[4] | 李翔宇,赵志诚,王文逾. 基于反向解耦的PWM整流器分数阶内模控制[J]. 山东大学学报(工学版), 2018, 48(4): 109-115. |
[5] | 吴华春,谢思源,陈昌皓. 磁悬浮作动器的串级PID控制设计与试验[J]. 山东大学学报(工学版), 2018, 48(4): 88-93. |
[6] | 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9. |
[7] | 王琦,孙竹梅,刘少虹,白建云. 基于现场总线兼容技术的除尘系统一体化改造[J]. 山东大学学报(工学版), 2018, 48(4): 37-41. |
[8] | 马驰骋,郭宗和,刘灿昌,代祥俊,张希农,毛伯永. 变质量弹性梁结构动力学特性[J]. 山东大学学报(工学版), 2018, 48(4): 78-87. |
[9] | 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80. |
[10] | 崔恒斌,周瑾,董继勇,金超武. V-Gap度量磁悬浮推力轴承系统H∞控制器设计[J]. 山东大学学报(工学版), 2018, 48(2): 86-93. |
[11] | 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49. |
[12] | 张博涵,陈哲明,付江华,陈宝. 四轮独立驱动电动汽车自适应驱动防滑控制[J]. 山东大学学报(工学版), 2018, 48(1): 96-103. |
[13] | 宋正强,杨辉玲,肖丹. 基于在线粒子群优化方法的IPMSM驱动电流和速度控制器[J]. 山东大学学报(工学版), 2018, 48(1): 112-116. |
[14] | 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62. |
[15] | 张卫江,党宏社. 空间电压矢量对感应电机软起动控制策略[J]. 山东大学学报(工学版), 2017, 47(6): 70-76. |
|