山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (1): 82-94.doi: 10.6040/j.issn.1672-3961.0.2019.178
Bo WANG1(),Buwei WANG1,Ming YANG2,*(),Yuanchun ZHAO3,Wenli ZHU2
摘要:
风电爬坡事件(wind power ramp events, WPRE)易破坏电力系统的有功功率平衡,劣化频率稳定性及电能质量,威胁电网的安全稳定运行。由此,提出一种基于信度网络(credal network, CN)的WPRE非精确条件概率预测方法,对WPRE各状态发生概率的区间范围进行预测。运用贪婪搜索算法挖掘WPRE与多个气象变量之间的相依性关系,并搭建CN结构以抽象表达;在超参数设置方面对非精确狄利克雷模型(imprecise Dirichlet model, IDM)进行了拓展,使用拓展后的IDM对变量间的条件相依性关系进行不确定性量化,完成CN的参数估计;基于建立的CN模型,在获取气象预测信息的条件下,结合CN概率推断算法对多状态WPRE的分布进行非精确概率推断;采用宁夏某风电场的实测数据对本方法进行测试,验证了该方法在观测样本不充足的预测情景下优异的预测性能。
中图分类号:
1 | 李俊峰,蔡丰波,乔黎明. 2012中国风电发展报告[R].北京:中国环境科学出版社, 2012. |
LI Junfeng, CAI Fengbo, QIAO Liming. Report of China wind power outlook in 2012[R]. Beijing: China Environmental Science Press, 2012. | |
2 | 娄素华, 杨天蒙, 吴耀武, 等. 含高渗透率风电的电力系统复合储能协调优化运行[J]. 电力系统自动化, 2016, 40 (7): 30- 35. |
LOU Suhua , YANG Tianmeng , WU Yaowu , et al. Coordinated optimal operation of hybrid energy storage in power system accommodated high penetration of wind power[J]. Automation of Electric Power Systems, 2016, 40 (7): 30- 35. | |
3 | 欧阳庭辉, 查晓明, 秦亮, 等. 基于小波特征提取和筛选的爬坡事件分类[J]. 中国电机工程学报, 2016, 36 (9): 2373- 2380. |
OUYANG Tinghui , ZHA Xiaoming , QIN Liang , et al. Classification of wind power ramps based on screened wavelet energy characteristics[J]. Proceedings of the CSEE, 2016, 36 (9): 2373- 2380. | |
4 |
QI Yongzhi , LIU Yutian . Wind power ramping control using competitive game[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (4): 1516- 1524.
doi: 10.1109/TSTE.2016.2558584 |
5 | 崔明建, 孙元章, 柯德平, 等. 考虑电网侧频率偏差的风电功率爬坡事件预测方法[J]. 电力系统自动化, 2014, 38 (5): 8- 13. |
CUI Mingjian , SUN Yuanzhang , KE Deping , et al. Prediction method for wind power ramp events considering frequency deviation of power grid side[J]. Automation of Electric Power Systems, 2014, 38 (5): 8- 13. | |
6 | CUI Mingjian , VENKAT K , BRI-MATHIAS H , et al. A copula-based conditional probabilistic forecast model for wind power ramps[J]. IEEE Transactions on Smart Grid, 2018, 1- 1. |
7 | 张东英, 代悦, 张旭, 等. 风电爬坡事件研究综述及展望[J]. 电网技术, 2018, 42 (6): 1783- 1792. |
ZHANG Dongying , DAI Yue , ZHANG Xu , et al. Review and prospect of research on wind power ramp events[J]. Power System Technology, 2018, 42 (6): 1783- 1792. | |
8 | LIU Yongqian, SUN Ying, HAN Shuang. A WT-ARMA based method for wind power ramp events forecasting[C]//5th IET International Conference on Renewable Power Generation. London, UK: IET, 2016: 21-23. |
9 | NAYAK A K, SHARMA K C, BHAKAR R. ARIMA based statistical approach to predict wind power ramps[C]//2015 IEEE Power and Energy Society General Meeting. Denver, USA: IEEE, 2015: 1-4. |
10 |
CUI M , ZHANG J , FLORITA A R , et al. An optimized swinging door algorithm for identifying wind ramping events[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (1): 150- 162.
doi: 10.1109/TSTE.2015.2477244 |
11 |
ZHANG J , FLORITA A , HODGE B M , et al. Ramp forecasting performance from improved short-term wind power forecasting[J]. Energy, 2017, 122, 528- 541.
doi: 10.1016/j.energy.2017.01.104 |
12 |
熊一, 查晓明, 秦亮, 等. 风电功率爬坡气象场景分类模型及阈值整定研究[J]. 电工技术学报, 2016, 31 (19): 155- 162.
doi: 10.3969/j.issn.1000-6753.2016.19.016 |
XIONG Yi , ZHA Xiaoming , QIN Liang , et al. Study on wind power ramping weather scenario classification model and threshold setting[J]. Transactions of China Electrotechnical Society, 2016, 31 (19): 155- 162.
doi: 10.3969/j.issn.1000-6753.2016.19.016 |
|
13 |
GALLGO-CASTILLO C , CUERVA-TEJERO A , LOPEZ-GARCIA O . A review on the recent history of wind power ramp forecasting[J]. Renewable and Sustainable Energy Reviews, 2015, 52, 1148- 1157.
doi: 10.1016/j.rser.2015.07.154 |
14 | KUSIAK A . Prediction of wind farm power ramp rates: a data-mining approach[J]. Journal of Solar Energy Engineering, 2009, 131 (3): 376- 385. |
15 |
崔明建, 孙元章, 柯德平. 基于原子稀疏分解和BP神经网络的风电功率爬坡事件预测[J]. 电力系统自动化, 2014, 26 (12): 6- 11.
doi: 10.7500/AEPS20130418003 |
CUI Mingjian , SUN Yuanzhang , KE Deping . Wind power ramp events forecasting based on atomic sparse decomposition and BP neural networks[J]. Automation of Electric Power Systems, 2014, 26 (12): 6- 11.
doi: 10.7500/AEPS20130418003 |
|
16 | ZAREIPOUR H, HUANG D, ROSEHART W. Wind power ramp events classification and forecasting: a data mining approach[C]//2011 IEEE Power and Energy Society General Meeting. Detroit, USA: IEEE, 2011: 1-3. |
17 | POTTER C W, GRIMIT E, NIJSSEN B.Potential benefits of a dedicated probabilistic rapid ramp event forecast tool[C]//2009 IEEE/PES Power Systems Conference and Exposition. Seattle, USA: IEEE, 2009: 1-3. |
18 | BOSSAVY A, GIRARD R, KARINIOTAKIS G.Forecasting uncertainty related to ramps of wind power production[C]//European Wind Energy Conference and Exhibition 2010. Warsaw, Poland: European Wind Energy Association, 2010: 2-9. |
19 | LI Y Q, PETR M, EDWARD L, et al. Temporal uncertainty of wind ramp predictions using probabilistic forecasting technique[C]//2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService). Oxford, UK: IEEE, 2016: 166-173. |
20 | BILLINTON R , KARKI R , VERMA Ajit Kumar . Reliability and risk evaluation of wind integrated power systems[M]. New Delhi, India: Springer, 2013: 29- 44. |
21 |
BOSSAVY A , GIRARD R , KARINIOTAKIS G . Forecasting ramps of wind power production with numerical weather prediction ensembles[J]. Wind Energy, 2013, 16 (1): 51- 63.
doi: 10.1002/we.526 |
22 |
CUI M , ZHANG J , WANG Q , et al. A data-driven methodology for probabilistic wind power ramp forecasting[J]. IEEE Transactions on Smart Grid, 2019, 10 (2): 1326- 1338.
doi: 10.1109/TSG.2017.2763827 |
23 |
COZMAN F G . Credal networks[J]. Artificial Intelligence, 2000, 120 (2): 199- 233.
doi: 10.1016/S0004-3702(00)00029-1 |
24 |
FRIEDMAN N , GEIGER D , GOLDSZMIDT M . Bayesian network classifiers[J]. Machine Learning, 1997, 29 (2/3): 131- 163.
doi: 10.1023/A:1007465528199 |
25 |
BOUCHAALA L , MASMOUDI A , GARGOURI F , et al. Improving algorithms for structure learning in Bayesian networks using a new implicit score[J]. Expert Systems with Applications, 2010, 37 (7): 5470- 5475.
doi: 10.1016/j.eswa.2010.02.065 |
26 | SAMMUT C , WEBB G . Encyclopedia of machine learning[M]. New York, USA: Springer, 2010: 483- 489. |
27 | CHICKERING D M , HECKERMAN D , MEEK C . Large-sample learning of Bayesian networks is NP-hard[J]. Journal of Machine Learning Research, 2004, 5, 1287- 1330. |
28 | WALLEY P . Inferences from multinomial data: learning about a bag of marbles[J]. Journal of the Royal Statistical Society, 1996, 58, 3- 57. |
29 |
YANG M , WANG J H , DIAO H R . Interval estimation for conditional failure rates of transmission lines with limited samples[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 2752- 2763.
doi: 10.1109/TSG.2016.2618623 |
30 | KOTSIANTIS S , KANELLOPOULOS D . Discretization techniques: a recent survey[J]. GESTS International Transactions on Computer Science and Engineering, 2006, 32 (1): 47- 58. |
31 | HECKENBERGEROVA J, MUSILEK P, JANATA M. Sensitivity analysis of PCA method for wind ramp event detection[C]//IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). Florence, Italy: IEEE, 2016: 1-3. |
32 | FERREIRA C , GAMA J , MATIAS L . A survey on wind power ramp forecasting[J]. Energy and Power Engineering, 2010, 5, 368- 372. |
[1] | 荆业飞1,张承慧1*,徐蓓蓓2,李珂1,褚晓广1. 基于阻抗匹配的小型风电系统功率输出优化方法[J]. 山东大学学报(工学版), 2013, 43(5): 39-43. |
[2] | 荆业飞1,徐蓓蓓2,张承慧1*,李珂1,褚晓广1. 基于模式搜索的风能最大功率跟踪控制[J]. 山东大学学报(工学版), 2013, 43(5): 44-48. |
|