山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (1): 21-27.doi: 10.6040/j.issn.1672-3961.0.2019.411
Delei CHEN1(),Cheng WANG1,*(),Jianwei CHEN2,Yiyin WU1
摘要:
针对传统协同过滤推荐算法存在无法反映用户短时兴趣的问题,提出一种基于门控循环单元(gated recurrent unit, GRU)神经网络与主动学习的协同过滤推荐算法。在采用GRU神经网络的基础上,将数据进行时序化处理,反映用户兴趣变化,并利用主动学习动态采样数据中的高质量的数据进行GRU神经网络的训练,使模型快速建立。在MovieLens1M数据集上的试验结果表明:加入主动学习的GRU模型的推荐算法比基于用户的协同过滤推荐算法(user-based collaborative filtering, UCF)、基于马尔科夫模型的协同过滤推荐算法(markov chain, MC)、基于隐语义模型的协同过滤推荐算法(latent factor model, LFM)算法有更高的短时预测率、召回率、项目覆盖率以及用户覆盖数,能够有效预测用户短时兴趣,提升精度,发掘长尾物品,且与原始GRU模型相比能够以更少的迭代次数达到相同效果。
中图分类号:
1 |
冷亚军, 陆青, 梁昌勇. 协同过滤推荐技术综述[J]. 模式识别与人工智能, 2014, 27 (8): 720- 734.
doi: 10.3969/j.issn.1003-6059.2014.08.007 |
LENG Yajun , LU Qing , LIANG Changyong . Survey of recommendation based on collaborative filtering[J]. Pattern Recognition and Artificial Intelligence, 2014, 27 (8): 720- 734.
doi: 10.3969/j.issn.1003-6059.2014.08.007 |
|
2 | 翁小兰, 王志坚. 协同过滤推荐算法研究进展[J]. 计算机工程与应用, 2018, 54 (1): 25- 31. |
WENG Xiaolan , WANG Zhijian . Research progress of collaborative filtering recommendation algorithm[J]. Computer Engineering and Applications, 2018, 54 (1): 25- 31. | |
3 | KOREN Y , BELL R . Recommender systems handbook[M]. New York, USA: Springer, 2015: 77- 118. |
4 |
THORAT P B , GOUDAR R M , BARVE S . Survey on collaborative filtering, content-based filtering and hybrid recommendation system[J]. International Journal of Computer Applications, 2015, 110 (4): 31- 36.
doi: 10.5120/19308-0760 |
5 |
ELAHI M , RICCI F , RUBENS N . A survey of active learning in collaborative filtering recommender systems[J]. Computer Science Review, 2016, 20, 29- 50.
doi: 10.1016/j.cosrev.2016.05.002 |
6 | 季芸, 胡雪蕾. 基于Baseline SVD主动学习算法的推荐系统[J]. 现代电子技术, 2015, 38 (12): 8- 11. |
JI Yun , HU Xuelei . Recommender system based on Baseline SVD active learning algorithm[J]. Modern Electronics Technique, 2015, 38 (12): 8- 11. | |
7 | 余天豪.基于社会网络的主动信息推送算法研究[D].杭州:杭州师范大学, 2012. |
YU Tianhao. Research on recommendation algorithm based on social network[D]. Hangzhou: Hangzhou Normal University, 2012. | |
8 | GUO G, ZHANG J, YORKE-SMITH N. Trust SVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Texas, USA: AAAI Press, 2015: 123-129. |
9 | JOHNSON J, NG Y K. Enhancing long tail item recommendations using tripartite graphs and Markov process[C]//Proceedings of the International Conference on Web Intelligence. California, USA: ACM, 2017: 761-768. |
10 | ALSHAMMARI G, JORRO-ARAGONESES J L, KAPETANAKIS S, et al. A hybrid CBR approach for the long tail problem in recommender systems[C]// International Conference on Case-Based Reasoning. Trondheim, Norway: Springer, 2017: 35-45. |
11 | HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Perth, Australia: ACM, 2017: 173-182. |
12 | XUE H J, DAI X Y, ZHANG J, et al. Deep matrix factorization models for recommender systems[C]//International Joint Conference on Artificial Intelligence. Melbourne, Australia: AAAI Press, 2017: 3203-3209. |
13 | CHEN T, SUN Y, SHI Y, et al. On sampling strategies for neural network-based collaborative filtering[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, Canada: ACM, 2017: 767-776. |
14 | BILLSUS D, PAZZANI M J. Learning collaborative information filters[C]// Proceedings of the Fifteenth International Conference on Machine Learning. California, USA: Morgan Kaufmann Publishers Inc., 1998: 46-54. |
15 | FUNK S. Netflix update: try this at home[EB/OL]. (2006-12-11) [2019-04-12]. http://sifter.org/~simon/journal/20061211.html. |
16 | KOREN Y . Factor in the neighbors: scalable and accurate collaborative filtering[J]. Acm Transactions on Knowledge Discovery from Data, 2010, 4 (1): 1- 24. |
17 | DEVOOGHT R, BERSINI H. Long and short-term recommendations with recurrent neural networks[C]//Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization. Bratislava, Slovakia: ACM, 2017: 13-21. |
18 |
LIU J , WU C , WANG J . Gated recurrent units based neural network for time heterogeneous feedback recommendation[J]. Information Sciences, 2018, 423, 50- 65.
doi: 10.1016/j.ins.2017.09.048 |
19 |
HOCHREITER S , SURHONE J . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735 |
20 | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar: MIT Press, 2014: 1724-1734. |
21 | HIDASI B, KARATZOGLOU A. Recurrent neural networks with top-k gains for session-based recommendations[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino, Italy:ACM, 2018: 843-852. |
22 |
CHAKRABORTY S , BALASUBRAMANIAN V , SUN Q . Active batch selection via convex relaxations with guaranteed solution bounds[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37 (10): 1945- 1958.
doi: 10.1109/TPAMI.2015.2389848 |
23 | KONYUSHKOVA K, SZNITMAN R, FUA P. Learning active learning from data[C]//Advances in Neural Information Processing Systems. California, USA: ACM, 2017: 4225-4235. |
24 | HUANG S J, ZHAO J W, LIU Z Y. Cost-effective training of deep cnns with active model adaptation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, UK:ACM, 2018: 1580-1588. |
25 | KARIMI R, FREUDENTHALER C, NANOPOULOS A, et al. Non-myopic active learning for recommender systems based on Matrix Factorization[C]//IEEE International Conference on Information Reuse and Integration. Las Vegas, USA: IEEE, 2011:299-303. |
26 | ZHOU D, WANG B, RAHIMI S M, et al. A study of recommending locations on location-based social network by collaborative filtering[C]//Canadian Conference on Artificial Intelligence. Toronto, Canada:Springer, 2012: 255-266. |
27 | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized markov chains for next-basket recommendation[C]//Proceedings of the 19th international conference on World wide web. North Carolina, USA:ACM, 2010: 811-820. |
[1] | 周晓昕,廖祝华,刘毅志,赵肄江,方艺洁. 融合历史与当前交通流量的信号控制方法[J]. 山东大学学报 (工学版), 2023, 53(4): 48-55. |
[2] | 于畅,伍星,邓秋菊. 基于深度学习的多视角螺钉缺失智能检测算法[J]. 山东大学学报 (工学版), 2023, 53(4): 104-112. |
[3] | 宋佳芮,陈艳平,王凯,黄瑞章,秦永彬. 基于Affix-Attention的命名实体识别语义补充方法[J]. 山东大学学报 (工学版), 2023, 53(2): 70-76. |
[4] | 袁钺,王艳丽,刘勘. 基于空洞卷积块架构的命名实体识别模型[J]. 山东大学学报 (工学版), 2022, 52(6): 105-114. |
[5] | 李旭涛,杨寒玉,卢业飞,张玮. 基于深度学习的遥感图像道路分割[J]. 山东大学学报 (工学版), 2022, 52(6): 139-145. |
[6] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
[7] | 杨霄,袭肖明,李维翠,杨璐. 基于层次化双重注意力网络的乳腺多模态图像分类[J]. 山东大学学报 (工学版), 2022, 52(3): 34-41. |
[8] | 龚楷伦,翟婷婷,唐鸿成. 一种面向多标签分类的在线主动学习算法[J]. 山东大学学报 (工学版), 2022, 52(2): 80-88. |
[9] | 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98. |
[10] | 蒋桐雨, 陈帆, 和红杰. 基于非对称U型金字塔重建的轻量级人脸超分辨率网络[J]. 山东大学学报 (工学版), 2022, 52(1): 1-8. |
[11] | 吴建清,宋修广. 同步定位与建图技术发展综述[J]. 山东大学学报 (工学版), 2021, 51(5): 16-31. |
[12] | 杨修远,彭韬,杨亮,林鸿飞. 基于知识蒸馏的自适应多领域情感分析[J]. 山东大学学报 (工学版), 2021, 51(3): 15-21. |
[13] | 柴庆发,孙守晶,邱吉福,陈明,魏振,丛伟. 气象灾害条件下电网应急物资预测方法[J]. 山东大学学报 (工学版), 2021, 51(3): 76-83. |
[14] | 廖锦萍,莫毓昌,YAN Ke. 基于C-LSTM的短期用电预测模型和应用[J]. 山东大学学报 (工学版), 2021, 51(2): 90-97. |
[15] | 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13. |
|