您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (1): 8-13.doi: 10.6040/j.issn.1672-3961.0.2019.276

• 机器学习与数据挖掘 • 上一篇    下一篇

基于ViBe算法运动特征的关键帧提取算法

李秋玲(),邵宝民*(),赵磊,王振,姜雪   

  1. 山东理工大学计算机科学与技术学院, 山东 淄博 255049
  • 收稿日期:2019-06-01 出版日期:2020-02-20 发布日期:2020-02-14
  • 通讯作者: 邵宝民 E-mail:liqiuling176@163.com;bmshao@sdut.edu.cn
  • 作者简介:李秋玲(1992-),女,山东泰安人,硕士研究生,主要研究方向为计算机视觉. E-mail: liqiuling176@163.com
  • 基金资助:
    国家自然科学基金资助项目(61841602);山东省自然科学基金资助项目(ZR2018PF005)

Key frame extraction based on ViBe algorithm for motion feature extraction

Qiuling LI(),Baomin SHAO*(),Lei ZHAO,Zhen WANG,Xue JIANG   

  1. College of Computer Science and Technology, Shandong University of Technology, Zibo 255049, Shandong, China
  • Received:2019-06-01 Online:2020-02-20 Published:2020-02-14
  • Contact: Baomin SHAO E-mail:liqiuling176@163.com;bmshao@sdut.edu.cn
  • Supported by:
    国家自然科学基金资助项目(61841602);山东省自然科学基金资助项目(ZR2018PF005)

摘要:

针对视频关键帧提取算法中运动类视频运动目标特征不易提取所造成的错选和漏选问题,提出一种基于背景建模(visual background extractor, ViBe)算法的前景运动目标特征提取的关键帧提取算法。通过ViBe算法对视频序列进行前景目标检测,提取前景运动目标的尺度不变特征变换(scale invariant feature transform, SIFT)特征,并对相邻帧之间的特征数据进行特征点匹配,根据定义的公式计算视频帧的相似度,然后根据提出的关键帧判别方法输出视频的关键帧。试验结果表明,该算法能较好的解决运动类视频关键帧提取中出现的漏选和错选问题,与基于SIFT分布直方图的算法相比,其查准率和查全率的综合指标F1值有较好提高。因此该算法对于判别运动类视频中包含关键动作的关键帧具有较好的检测效果。

关键词: 关键帧提取, 视频序列背景检测算法, 尺度不变特征变换, 目标特征, 特征点匹配

Abstract:

Aiming at the fact that the background was dominant in the key frame extraction algorithm, in which the foreground target was too small and it was not easy to extract the features of moving targets in sports video, a key frame extraction algorithm for foreground moving target feature extraction based on background modeling algorithm was proposed, which was called visual background extractor (ViBe) algoritm. The foreground target detection of video sequence was firstly carried out using ViBe algorithm, afterwards the scale-invariant feature transformation (SIFT) features of the foreground moving target were extracted. Based on the similarity calculated from video frame series, the key frames of video were output according to the key frame discrimination method. The experimental results showed that the proposed algorithm could solve the problem of missed selection and misselection in traditional key frame extraction. Compared with the algorithm based on SIFT distribution histogram, the F1 score was well improved. The algorithm based on ViBe could effectively identify key frames in sports video.

Key words: key frame extraction, background modeling, scale invariant feature transform, target characteristic, feature point matching

中图分类号: 

  • TP37

图1

ViBe分类图"

图2

ViBe更新图示"

图3

运动物体的SIFT特征"

图4

关键帧提取算法流程图"

表1

试验视频信息"

视频名称 总帧数/帧 镜头数/个 时长/s
体操视频 7 594 55 303.76
足球视频 5 124 17 204.96
羽毛球视频 3 750 19 50.00
篮球视频 4 432 19 177.28
击剑视频 2 762 24 110.48

图5

体操视频提取结果"

图6

足球视频提取结果"

图7

羽毛球视频提取结果"

图8

篮球视频提取结果"

表2

更改参数前后对比结果"

方法 体操 足球 羽毛球 篮球 击剑
漏选 错选 冗余 漏选 错选 冗余 漏选 错选 冗余 漏选 错选 冗余 漏选 错选 冗余
A 43 37 18 10 8 6 13 9 10 18 15 19 20 14 6
B 45 38 22 11 8 8 14 9 9 19 17 20 20 15 7

表3

本文算法与其他文献算法对比结果"

方法 体操 足球 羽毛球篮球击剑
漏选 错选 选对 漏选 错选 选对 漏选 错选 选对 漏选 错选 选对 漏选 错选 选对
C 43 37 184 10 8 50 13 9 42 18 15 68 20 14 58
D 50 41 177 13 9 47 14 10 41 20 18 66 23 20 55

图9

本研究算法与SIFT分布直方图算法对比结果"

1 张佳.体育视频切变检测与关键帧提取[D].湖北:华中科技大学, 2014.
ZHANG Jia. Sports video cut detection and key frame extraction[D]. Hubei: Huazhong University of science and technology, 2014.
2 ZONG Z, GONG Q. Key frame extraction based on dynamic color histogram and fast wavelet histogram[C]//2017 IEEE International Conference on Information and Automation (ICIA). Macau, China: IEEE, 2017: 183-188.
3 郝会芬.视频镜头分割和关键帧提取关键技术研究[D].湖北:华中科技大学, 2015.
HAO Huifen. Key technology research of video shot segmentation and key frame extraction[D]. Hubei: Huazhong University of Science and Technology, 2015.
4 罗森林, 马舒洁, 梁静, 等. 基于子镜头聚类方法的关键帧提取技术[J]. 北京理工大学学报, 2011, 31 (7): 351- 352.
LUO Senling , MA Shujie , LIANG Jing , et al. Method of key frame extraction based on subshot clustering[J]. Transactions of Beijing Institute of Techology, 2011, 31 (7): 351- 352.
5 将元友. 一种基于聚类的关键帧提取算法[J]. 数字技术与应用, 2014, (11): 126- 127.
JIANG Yuanyou . A key frame extraction algorithm based on clustering[J]. Digital Technology and Application, 2014, (11): 126- 127.
6 胡圆圆.基于视觉显著性的视频关键帧提取与帧速率上转换[D].南京:南京邮电大学, 2016.
HU Yuanyuan. Video keyframe extraction and frame rate up conversion based on vision saliency[D]. Nanjing: Nanjing University of Post and Telecommunication, 2016.
7 SHI Lichun , CAI Jingzhi , ZHANG Mingxin . Key frame extraction algorithm based on rough set in compressed domain[J]. Computer Engineering, 2011, 33 (10): 2340- 2346.
8 白慧茹, 吕进来. 基于聚类方法改进的关键帧提取算法[J]. 计算机工程与设计, 2017, 38 (7): 1929- 1933.
BAI Huiru , L Jinlai . Improved algorithm of key frame extraction based on clustering methods[J]. Computer Engineering and Design, 2017, 38 (7): 1929- 1933.
9 沈济南, 梁芳, 郑明辉. 基于自主扰动变异差分视频的关键帧提取算法[J]. 武汉大学学报, 2014, 60 (5): 434- 440.
SHEN Jinan , LIANG Fang , ZHENG Minghui . Improved keyframe extraction algorithm based on self perturbation mutation differential evolution[J]. Journal of Wuhan University, 2014, 60 (5): 434- 440.
10 WOLF W. Key frame selection by motion analysis [C]//Proceedings of 1996 IEEE International Conferenceon Acoustics, Speech, and Signal Processing Conference Proceedings. New York, USA: IEEE, 1996: 1228-1231.
11 BARNICH O , DROOGENBROECK M V . ViBe: A universal background subtraction algorithm for video sequences[J]. IEEE Transactionson Image Processing, 2011, 20 (6): 1709- 1724.
doi: 10.1109/TIP.2010.2101613
12 田丽华, 张咪, 李晨. 基于运动目标特征的关键帧提取算法[J]. 计算机应用研究, 2019, 36 (10): 3183- 3186.
TIAN Lihua , ZHANG Mi , LI Chen . Key frame extrac-tion algorithm based on feature of moving target[J]. Application Research of Computers, 2019, 36 (10): 3183- 3186.
13 张文雅, 徐华中, 罗杰. 基于ViBe的复杂背景下的运动目标检测[J]. 计算机科学, 2017, 44 (9): 304- 307.
ZHANG Wenya , XU Huazhong , LUO Jie . Moving objects detection under complex background based on ViBe[J]. Computer Science, 2017, 44 (9): 304- 307.
14 VAN M DROOGENBROECK and PAQUOT O. Background subtraction: experiments and improvements for vibe[C]//Proceedings of 25th IEEE International Conferenceon Computer Vision and Pattern Recognition. Workshops, RI, USA: IEEE Computer society Press, 2012: 32-37.
15 BARBIERI T, GOULARTE R. KS-SIFT: a keyframe extraction method based on local features[C]//Proceedings of IEEE International Symposium on Multimedia. Sao Paulo, Brazil: IEEE, 2015: 13-17.
16 李海洋, 文永革, 何红洲. 一种改进的SIFT特征点检测方法[J]. 计算机应用与软件, 2013, 30 (9): 147- 150.
doi: 10.3969/j.issn.1000-386x.2013.09.041
LI Haiyang , WEN Yongge , HE Hongzhou . An imporved SIFT feature point detection method[J]. Computer Applications and Software, 2013, 30 (9): 147- 150.
doi: 10.3969/j.issn.1000-386x.2013.09.041
17 HU Xuelong, TANG Yingcheng, ZHANG Zhenghua. Video object matching based on sift algorithm[C]//Conference Neural on Networks and Signal Processing. Nanjing, China: IEEE, 2008: 412-415.
18 屈有佳.基于SIFT特征的关键帧提取算法研究[D].北京:北京交通大学, 2015.
QU Youjia. Study of keyframe extraction algorithm based on SIFT fratures[D]. Beijing: Beijing Jiaotong University, 2015.
19 柳雪.视频检索中基于多特征的关键帧提取算法研究[D].江苏:中国矿业大学, 2015.
LIU Xue. Research on keyframe extraction algorithm based on Multi-featurein video retrieval[D]. Jiangsu: China University of Mining and Technology, 2015.
20 HANNANE R , ELBOUSHAKI A , AFDELK , et al. An efficient method for video shot boundary detection and key frame extraction using SIFT-point distribution histogram[J]. International Journal of Multimedia Information Retrieval, 2016, 5 (2): 89- 104.
doi: 10.1007/s13735-016-0095-6
[1] 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法[J]. 山东大学学报(工学版), 2016, 46(6): 31-39.
[2] 牟春倩,唐雁. 融合整体和局部信息的三维模型检索方法[J]. 山东大学学报(工学版), 2016, 46(6): 48-53.
[3] 张训华1,业宁2,王厚立3. 基于Harris角点的木材CT图像配准[J]. 山东大学学报(工学版), 2010, 40(5): 101-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[3] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[4] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[5] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[6] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[7] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[8] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[9] 李辉平, 赵国群, 张雷, 贺连芳. 超高强度钢板热冲压及模内淬火工艺的发展现状[J]. 山东大学学报(工学版), 2010, 40(3): 69 -74 .
[10] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .