您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (3): 120-128.doi: 10.6040/j.issn.1672-3961.0.2018.443

• 化学与环境 • 上一篇    

改性超细炭黑诱发氧化应激的毒性效应与机理

贾晨号(),刘汝涛*()   

  1. 山东大学环境科学与工程学院, 山东 青岛 266200
  • 收稿日期:2018-10-18 出版日期:2019-06-20 发布日期:2019-06-27
  • 通讯作者: 刘汝涛 E-mail:1272466157@qq.com;rutaoliu@sdu.edu.cn
  • 作者简介:贾晨号(1993—),女,河北衡水人,硕士研究生,主要研究方向为环境监测与健康. E-mail:1272466157@qq.com
  • 基金资助:
    国家自然科学基金资助项目(21477067);国家自然科学基金资助项目(21777088);高等学校博士学科点专项科研基金资助项目(708058)

Toxic effects and mechanisms of oxidative stress induced by modified ultrafine carbon black

Chenhao JIA(),Rutao LIU*()   

  1. School of Environment Science and Engineering, Shandong University, Qingdao 266200, Shandong, China
  • Received:2018-10-18 Online:2019-06-20 Published:2019-06-27
  • Contact: Rutao LIU E-mail:1272466157@qq.com;rutaoliu@sdu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(21477067);国家自然科学基金资助项目(21777088);高等学校博士学科点专项科研基金资助项目(708058)

摘要:

为研究改性超细炭黑(modified ultrafine carbon black, MCB)诱发氧化应激的毒性效应与机理,将小鼠肝细胞和过氧化氢酶(catalase, CAT)暴露于不同质量浓度的MCB溶液中。采用CCK-8、丙二醛(malondialdehyde, MDA)含量和CAT活力检测等方法评价MCB的细胞毒性;利用荧光光谱,紫外-可见吸收光谱,圆二色谱等方法探究MCB对CAT构象的影响。结果表明:细胞活力随MCB质量浓度的升高而降低,低质量浓度的MCB(< 30 mg/L)刺激细胞提高CAT的活力来保护自身免受氧化损伤,高质量浓度的MCB(>30 mg/L)使MDA在细胞内累积并造成氧化还原失衡,造成肝脏的氧化损伤;光谱学研究发现, MCB会改变CAT的二、三级结构和氨基酸微环境,使肽链紧缩极性增强,骨架结构的变化降低了CAT的活性。阐明MCB造成氧化应激效应的毒性机理,同时为纳米材料的毒理研究提供了参考。

关键词: 改性超细炭黑, 氧化应激, 肝细胞, 过氧化氢酶, 荧光光谱, 紫外-可见吸收光谱

Abstract:

To study the toxic effects and mechanisms of oxidative stress induced by modified ultrafine carbon black (MCB), mouse hepatocytes and catalase (CAT) were exposed to MCB solutions. The cytotoxicity of MCB was assessed by CCK-8 kit, malondialdehyde (MDA) kit and CAT activity assay. The effects on CAT structure and function of MCB were investigated by utilizing fluorescence, UV—vis absorption and circular dichroism spectroscopy. The experiment results demonstrated that the hepatocyte viability decreased with the increase of MCB concentration. Low MCB doses (< 30 mg/L) increased CAT activity to protectcells from oxidative damage while high doses of MCB (> 30 mg/L) caused accumulation of MDA and redox imbalance in the cells, which induced oxidative damage in the liver. Spectroscopy studies found that MCB destroyed the secondary and tertiary structure of CAT and changed the microenvironment of amino acids, which made denaturation of the peptide chain. As a result, changes of skeleton structure reduced the activity of CAT. This study clarified the oxidative mechanism of MCB causing oxidative stress effects and provided a reference for the toxicity mechanism of nanomaterials.

Key words: modified ultrafine carbon black, oxidative stress, liver cells, catalase, fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy

中图分类号: 

  • X503.1

图1

MCB的SEM图和TEM图"

图2

改性前后超细炭黑在PB缓冲液中的分散情况"

图3

染毒24 h和48 h后小鼠肝细胞活力的变化"

图4

细胞活力随MCB质量浓度变化的剂量效应拟合曲线"

图5

不同MCB质量浓度下24 h肝细胞MDA生成量"

图6

肝细胞内24 h CAT活性变化"

图7

MCB对CAT荧光光谱的影响 MCB的质量浓度/(mg/L) a-g:0、2.5、5、7.5、10、15、20; pH=7.4, T=310 K "

图8

不同质量浓度的MCB对CAT紫外-可见吸光光谱的影响 MCB的质量浓度/(mg/L) a-g:0, 2.5, 5, 7.5, 10, 15, 20; pH=7.4, T=310 K "

图9

MCB与CAT结合作用示意图"

图10

MCB与CAT作用的三维荧光图谱"

表1

MCB与CAT结合的三维荧光信息"

MCB暴露的质量浓度/(mg·L-1) 峰1 峰2
激发波长/发射波长(nm/nm) 荧光强度 激发波长/发射波长(nm/nm) 荧光强度
0 280/280 4 309.0 280/326 5 600.3
2.5 280/284 9 035.4 280/328 5 006.1
5 280/284 9 078.6 280/328 3 862.7
10 280/284 9 595.5 280/330 2 633.3
15 280/284 9 615.8 280/330 1 493.1
20 280/284 9 680.5 280/332 1 040.7

表2

MCB对CAT二级结构的影响"

MCB暴露的质量浓度/ (mg·L-1) 二级结构含量/%
α-螺旋 β-折叠 β-转角 无序结构
0 43.4 18.8 14.4 23.1
5 45.8 18.0 14.2 22.9
10 47.9 17.4 13.9 21.6
20 49.5 16.7 13.5 21.3

图11

不同质量浓度的MCB对CAT圆二色谱的影响 MCB的质量浓度/(mg/L) a-d:0, 5, 10, 20; pH=7.4, T=310 K "

1 KHAN M B , PARVAZ M , KHAN Z H , et al. Graphene oxide: synthesis and characterization[M]. Singapore: Springer Singapore, 2017: 1- 28.
2 LEE J H , WEE S B , KWON M S , et al. Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries[J]. Journal of Power Sources, 2011, 196 (15): 6449- 6455.
doi: 10.1016/j.jpowsour.2011.03.041
3 SENGUPTA R , BHATTACHARYA M , BANDYOPADHYAY S , et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites[J]. Progress in Polymer Science, 2011, 36 (5): 638- 670.
doi: 10.1016/j.progpolymsci.2010.11.003
4 ZHAO X C , LU D W , HAO F , et al. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity[J]. Journal of Hazardous Materials, 2015, 292, 98- 107.
doi: 10.1016/j.jhazmat.2015.03.023
5 THROWER P A . Toxicology of carbon nanomaterials[J]. Carbon, 2006, 44 (6): 1027.
doi: 10.1016/j.carbon.2005.12.022
6 CHANG C C , CHEN C Y , CHIU H F , et al. Elastases from inflammatory and dendritic cells mediate ultrafine carbon black induced acute lung destruction in mice[J]. Inhalation Toxicology, 2011, 23 (10): 616- 626.
doi: 10.3109/08958378.2011.598965
7 INOUE K , YANAGISAWA R , KOIKE E , et al. Effects of carbon black nanoparticles on elastase-induced emphysematous lung injury in mice[J]. Basic & Clinical Pharmacology & Toxicology, 2011, 108 (4): 234- 240.
8 BUCHNER N , ALE-AGHA N , JAKOB S , et al. Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes[J]. Experimental Gerontology, 2013, 48 (1): 8- 16.
doi: 10.1016/j.exger.2012.03.017
9 INOUE H , SHIMADA A , KAEWAMATAWONG T , et al. Ultrastructural changes of the air-blood barrier in mice after intratracheal instillation of lipopolysaccharide and ultrafine carbon black particles[J]. Experimental and Toxicologic Pathology, 2009, 61 (1): 51- 58.
10 TIMBLIN C R , SHUKLA A , BERLANGER I , et al. Ultrafine airborne particles cause increases in protooncogene expression and proliferation in alveolar epithelial cells[J]. Toxicology and Applied Pharmacology, 2002, 179 (2): 98- 104.
doi: 10.1006/taap.2001.9343
11 WU Z C , ZHANG B , YAN B . Regulation of enzyme activity through interactions with nanoparticles[J]. International Journal of Molecular Sciences, 2009, 10 (10): 4198- 4209.
doi: 10.3390/ijms10104198
12 ZHANG R , WU Q Q , LIU R T . Characterizing the binding interaction between ultrafine carbon black (UFCB) and catalase: electron microscopy and spectroscopic analysis[J]. RSC Advances, 2017, 7 (67): 42549- 42558.
doi: 10.1039/C7RA03805D
13 CASTILLO C , PEREIRA V , ABUELO A , et al. Preliminary results in the redox balance in healthy cats: influence of age and gender[J]. Journal of Feline Medicine and Surgery, 2013, 15 (4): 328- 332.
doi: 10.1177/1098612X12467996
14 HU X L , CUI S Y , LIU J Q . Fluorescence studies of interaction between flavonol p-coumaroylglucoside tiliroside and bovine serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 77 (2): 548- 553.
doi: 10.1016/j.saa.2010.06.016
15 ZHANG Y Z , ZHOU B , LIU Y X , et al. Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene[J]. Journal of Fluorescence, 2008, 18 (1): 109- 118.
doi: 10.1007/s10895-007-0247-4
16 MONDAL S , DAS S , GHOSH S . Interaction of myoglobin with cationic gemini surfactants in phosphate buffer at pH 7.4[J]. Journal of Surfactants and Detergents, 2015, 18 (3): 471- 476.
doi: 10.1007/s11743-015-1680-z
17 JING M , LIU Y , SONG W , et al. Oxidative damage induced by copper in mouse primary hepatocytes by single-cell analysis[J]. Environmental Science & Pollution Research, 2016, 23 (2): 1335- 1343.
18 SRIKANTH K , PEREIRA E , DUARTE A C , et al. Assessment of cytotoxicity and oxidative stress induced by titanium oxide nanoparticles on chinook salmon cells[J]. Environmental Science & Pollution Research, 2015, 22 (20): 15579- 15586.
19 MITRY R R , HUGHES R D , AW M M , et al. Human hepatocyte isolation and relationship of cell viability to early graft function[J]. Cell Transplantation, 2003, 12 (1): 69- 74.
20 GUAN S , GE D , LIU T Q , et al. Protocatechuic acid promotes cell proliferation and reduces basal apoptosis in cultured neural stem cells[J]. Toxicology in Vitro, 2009, 23 (2): 201- 208.
doi: 10.1016/j.tiv.2008.11.008
21 GU Q , KENNY J E . Improvement of inner filter effect correction based on determination of effective geometric parameters using a conventional fluorimeter[J]. Analytical Chemistry, 2009, 81 (1): 420- 426.
22 WU H , CHEN M M , SHANG M T , et al. Insights into the binding behavior of bovine serum albumin to black carbon nanoparticles and induced cytotoxicity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 2005, 1- 7.
23 WU Y K , GUO Y F , SONG H Y , et al. Oxygen content determines the bio-reactivity and toxicity profiles of carbon black particles[J]. Ecotoxicology and Environmental Safety, 2018, 150, 207- 214.
doi: 10.1016/j.ecoenv.2017.12.044
24 FOUCAUD L , GOULAOUIC S , BENNASROUNE A , et al. Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule?[J]. Toxicology in Vitro, 2010, 24 (6): 1512- 1520.
doi: 10.1016/j.tiv.2010.07.012
25 HUSSAIN S , THOMASSEN L C J , FERECATU I , et al. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells[J]. Particle and Fibre Toxicology, 2010, 7, 17.
doi: 10.1186/1743-8977-7-17
26 GAWEL S , WARDAS M , NIEDWOROK E , et al. Malondialdehyde (MDA) as a lipid peroxidation marker[J]. Wiadomosci Lekarskie, 2004, 57 (9-10): 453- 455.
27 AYALA A , MUNOZ M F , ARGUELLES S . Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal[J]. Oxidative Medicine and Cellular Longevity, 2014, 2014, 360438.
28 YU H , ZHANG J , TONG Q , et al. Icariin attenuates carbon black-induced pulmonary inflammatory response and oxidative stress in mice[J]. International Journal of Clinical and Experimental Pathology, 2016, 9 (1): 81- 88.
29 LIU S , GUO X C , ZHANG X X , et al. Impact of iron precipitant on toxicity of arsenic in water: a combined in vivo and in vitro study[J]. Environmental Science & Technology, 2013, 47 (7): 3432- 3438.
30 TENG Y , ZHANG H , LIU R T . Molecular interaction between 4-aminoantipyrine and catalase reveals a potentially toxic mechanism of the drug[J]. Molecular Biosystems, 2011, 7 (11): 3157- 3163.
doi: 10.1039/c1mb05271c
31 BANERJEE M , BALLAL A , APTE K . Mn-catalase (Alr0998) protects the photosynthetic, nitrogen-fixing cyanobacterium anabaena PCC7120 from oxidative stress[J]. Environmental Microbiology, 2012, 14 (11): 2891- 2900.
doi: 10.1111/j.1462-2920.2012.02847.x
32 LIU W , ROSE J , PLANTEVIN S , et al. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona?[J]. Nanoscale, 2013, 5 (4): 1658- 1668.
doi: 10.1039/c2nr33611a
33 KOKKINOPOULOU M , SIMON J , LANDFESTER K , et al. Visualization of the protein corona: towards a biomolecular understanding of nanoparticlecell-interactions[J]. Nanoscale, 2017, 9 (25): 8858- 8870.
doi: 10.1039/C7NR02977B
34 XU M H , SHENG Z H , LU W Y , et al. Probing the interaction of mutiwalled carbon nanotubes and catalase: mutispectroscopic approach[J]. Journal of Biochemical and Molecular Toxicology, 2012, 26 (12): 493- 498.
doi: 10.1002/jbt.21454
35 PAUL B K , BHATTACHARJEE K , BOSE S , et al. A spectroscopic investigation on the interaction of a magnetic ferrofluid with a model plasma protein: effect on the conformation and activity of the protein[J]. Physical Chemistry Chemical Physics, 2012, 14 (44): 15482- 15493.
doi: 10.1039/c2cp42415k
36 ALBANI J R . Principles and applications of fluorescence spectroscopy[M]. Oxford, UK: Blackwell Science, 2007: 101- 138.
37 MALLICK A , HALDAR B , CHATTOPADHYAY N . Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6, 7-dihydro-12H indolo-2, 3-a quinolizine with serum albumins[J]. Journal of Physical Chemistry B, 2005, 109 (30): 14683- 14690.
doi: 10.1021/jp051367z
38 WANG Y Q , ZHANG H M , CAO J , et al. Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods[J]. Journal of Molecular Structure, 2013, 1051, 78- 85.
doi: 10.1016/j.molstruc.2013.07.048
39 ZHANG H M , TANG B P , WANG Y Q . The interaction of lysozyme with caffeine, theophylline and theobromine in solution[J]. Molecular Biology Reports, 2010, 37 (7): 3127- 3136.
doi: 10.1007/s11033-009-9891-x
40 MU Y , LIN J , LIU R T . Interaction of sodium benzoate with trypsin by spectroscopic techniques[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2011, 83 (1): 130- 135.
doi: 10.1016/j.saa.2011.07.092
41 WU T Q , WU Q , GUAN S Y , et al. Binding of the environmental pollutant naphthol to bovine serum albumin[J]. Biomacromolecules, 2007, 8 (6): 1899- 1906.
doi: 10.1021/bm061189v
42 VARLAN A , HILLEBRAND M . Study on the interaction of 2-carboxyphenoxathiin with bovine serum albumin and human serum albumin by fluorescence spectroscopy and circular dichroism[J]. Revue Roumaine De Chimie, 2010, 55 (1): 69- 77.
43 KOSHLAND D E . Correlation of structure and function in enzyme action[J]. Science, 1963, 142 (359): 1533- 1541.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[3] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[4] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[5] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[6] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[7] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[8] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[9] 孙国华,吴耀华,黎伟. 消费税控制策略对供应链系统绩效的影响[J]. 山东大学学报(工学版), 2009, 39(1): 63 -68 .
[10] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .