您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (3): 47-56.doi: 10.6040/j.issn.1672-3961.0.2018.385

• 控制科学与工程 • 上一篇    下一篇

考虑未知死区非线性的自适应模糊神经UUV航迹跟踪控制

马川1,2(),刘彦呈1,*(),刘厶源1,张勤进1   

  1. 1. 大连海事大学轮机工程学院, 辽宁 大连 116026
    2. 青岛远洋船员职业学院轮机系, 山东 青岛 266071
  • 收稿日期:2018-09-10 出版日期:2019-06-20 发布日期:2019-06-27
  • 通讯作者: 刘彦呈 E-mail:machuan1984@126.com;liuyc@dlmu.edu.cn
  • 作者简介:马川(1984—),男,山东青岛人,讲师,博士研究生,主要研究方向为船舶及无人水下航行器智能控制. E-mail: machuan1984@126.com
  • 基金资助:
    国家自然科学基金项目(51479018);中央高校基本科研业务费专项资金资助(3132016335)

Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with unknown dead-zone nonlinearity

Chuan MA1,2(),Yancheng LIU1,*(),Siyuan LIU1,Qinjin ZHANG1   

  1. 1. College of Marine Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
    2. Department of Marine Engineering, Qingdao Ocean Shipping Mariners College, Qingdao 266071, Shandong, China
  • Received:2018-09-10 Online:2019-06-20 Published:2019-06-27
  • Contact: Yancheng LIU E-mail:machuan1984@126.com;liuyc@dlmu.edu.cn
  • Supported by:
    国家自然科学基金项目(51479018);中央高校基本科研业务费专项资金资助(3132016335)

摘要:

针对无人水下航行器(unmanned underwater vehicles, UUV)在航迹跟踪控制中存在未知死区非线性和工作环境不确定性的问题,提出一种鲁棒自适应自组织模糊神经控制策略,采用滑模趋近律控制框架和自组织模糊神经网络逼近器在线估计系统未知状态和进行参数的自适应,并采用有限增益鲁棒控制器补偿重构误差。根据李雅普诺夫稳定性理论分析证明所有参数和跟踪状态均有界,并且当时间趋向于无穷大时,跟踪误差及其导数都趋向于零且闭环系统的信号有界。通过与已有控制策略对比仿真表明,该控制策略具有先进性和有效性,对无人水下航行器设计具有指导意义。

关键词: 无人水下航行器, 鲁棒自适应控制, 自组织模糊神经网络, 滑模趋近律控制, 未知死区非线性, 航迹跟踪

Abstract:

A robust adaptive self-organizing neuro-fuzzy control scheme for trajectory tracking of unmanned underwater vehicle with uncertainties and unknown dead-zone nonlinearity was proposed. The scheme adopted a novel sliding mode reaching law control framework and a self-organizing neuro-fuzzy network approximator to estimate the unknown dynamic and self-adaptive the parameter. The robust controller was employed to provide the finite L2-gain property to cope with reconstruction errors. Lyapunov stability theory analysis showed that tracking errors and their derivatives were stable and all signals in the closed-loop system were bounded. Comparative simulation results demonstrated the effectiveness and superiority of the proposed scheme, which could be a reference for the design of unmanned underwater vehicle.

Key words: UUV, robust adaptive tracking control, self-organizing neuro-fuzzy network, sliding mode reaching law control, unknown dead-zone nonlinearity, trajectory tracking

中图分类号: 

  • U665.2

图1

无人水下航行器的推进器分布情况"

图2

RASNFC控制策略的结构图"

图3

UUV参考航迹和实际航迹的对比图"

图4

UUV参考和实际航迹的姿态对比图"

图5

UUV参考和实际航迹的姿态导数的对比图"

图6

不同控制策略的跟踪误差e比较图"

图7

不同控制策略的跟踪误差导数${\mathit{\boldsymbol{\dot e}}}$比较图"

表1

不同控制策略的性能比较"

控制策略瞬态稳态性能运算时间/mse1e2e3e4e5${{\dot e}_1}$${{\dot e}_2}$${{\dot e}_3}$${{\dot e}_4}$${{\dot e}_5}$
AFSMC一般1.3546538216139651991712
FNNISMC一般1.1219429913124742671613
DSNFN较好1.0741334208067850491512
RASNFC很好0.7301050202020741051211
1 刘厶源, 刘彦呈, 付俞鑫, 等. 基于动态模糊神经趋近律的水下航行器航迹跟踪控制[J]. 大连海事大学学报, 2016, 42 (4): 1- 6.
doi: 10.3969/j.issn.1671-7031.2016.04.001
LIU Siyuan , LIU Yancheng , FU Yuxin , et al. Trajectory tracking control of underwater vehicles based on dynamic fuzzy neural network reaching law[J]. Journal of Dalian Maritime University, 2016, 42 (4): 1- 6.
doi: 10.3969/j.issn.1671-7031.2016.04.001
2 DAS B , SUBUDHI B , PATI B B . Cooperative formation control of autonomous underwater vehicles: an overview[J]. International Journal of Automation and Computing, 2016, 13 (3): 199- 225.
doi: 10.1007/s11633-016-1004-4
3 CHEN B , LIU X P , TONG S C . Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems[J]. IEEE Transactions on Fuzzy Systems, 2007, 15 (2): 287- 300.
4 KAYACAN E , RAMON H , SAEYS W . Adaptive neuro-fuzzy control of a spherical rolling robot using sliding mode control theory based online learning algorithm[J]. IEEE Transactions on Cybernetics, 2013, 43 (1): 170- 179.
doi: 10.1109/TSMCB.2012.2202900
5 WANG W Y , CHIEN Y H , LEU Y G . Adaptive T-S fuzzy-neural modeling and control for general MIMO unknown nonaffine nonlinear systems using projection update laws[J]. Automatica, 2010, 46 (5): 852- 863.
doi: 10.1016/j.automatica.2010.02.024
6 HASSANEIN O , ANAVATTI S G , SHIM H . Model-based adaptive control system for autonomous underwater vehicles[J]. Ocean Engineering, 2016, 127, 58- 69.
doi: 10.1016/j.oceaneng.2016.09.034
7 CHANG Y H , CHAN W S , CHANG C W , et al. Adaptive fuzzy dynamic surface control for ball and beam system[J]. International Journal of Fuzzy Systems, 2011, 13 (1): 1- 7.
8 CHEN C S . Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (9): 3402- 3414.
doi: 10.1109/TIE.2008.926778
9 ZHOU J , WEN C , ZHANG Y . Adaptive output control of non-linear systems with uncertain dead-zone nonlinearity[J]. IEEE Transactions on Automatic Control, 2006, 11 (2): 504- 511.
10 LIU Y J , TONG S C , WANG D . Adaptive neural output feedback controller design with reducedorder observer for a class of uncertain nonlinear SISO systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2011, 22 (8): 1328- 1334.
doi: 10.1109/TNN.2011.2159865
11 LEWIS F , TIM W K , WANG L Z . Dead-zone compensation in motion control systems using adaptive fuzzy logic control[J]. IEEE Transactions on Control System Technology, 1999, 7 (6): 731- 742.
doi: 10.1109/87.799674
12 LI Y , TONG S , LI T . Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones[J]. IEEE Transactions on Fuzzy Systems, 2015, 23 (4): 1228- 1241.
13 LI Y , TONG S , LIU Y , LI T . Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on small-gain approach[J]. IEEE Transactions on Fuzzy Systems, 2014, 22 (1): 164- 176.
14 TONG S , LI Y . Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones[J]. IEEE Transactions on Fuzzy Systems, 2012, 20 (1): 168- 180.
15 WANG N , QIAN C J , SUN J C , et al. Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles[J]. IEEE Transactions on Control System Technology, 2016, 24 (4): 1454- 1462.
16 WANG N , SUN J C , ER M J , et al. Adaptive robust online constructive fuzzy control of a complex surface vehicle system[J]. IEEE Transactions on Cybernetics, 2016, 46 (7): 1511- 1523.
doi: 10.1109/TCYB.2015.2451116
17 高剑. 无人水下航行器自适应非线性控制技术[M]. 西安: 西北工业大学出版社, 2016: 15- 32.
18 赵蕊, 余琨, 郑文成, 等. 无人水下航行器分布式运动控制系统设计与仿真验证[J]. 中国舰船研究, 2014, 9 (6): 92- 99.
doi: 10.3969/j.issn.1673-3185.2014.06.016
ZHAO Rui , YU Kun , ZHENG Wencheng , et al. Design and simulation of the distributive motion control system for unmanned underwater vehicles[J]. Chinese Journal of Ship Research, 2014, 9 (6): 92- 99.
doi: 10.3969/j.issn.1673-3185.2014.06.016
19 LIU Y C , LIU S Y , WANG N . Fully-tuned fuzzy neural network based robust adaptive tracking control of unmanned underwater vehicle with thruster dynamics[J]. Neuro Computing, 2016, 196, 1- 13.
20 FOSSEN T I . Marine control systems: guidance, navigation and control of ships rigs and underwater vehicles[M]. Trondheim, Norway: Marine Cybernetics AS, 2002: 1- 50.
21 JANG J O . A deadzone compensator of a DC motor system using fuzzy logic control[J]. IEEE Transactions on Systems Man and Cybernetics Applications and Reviews, 2001, 31 (1): 42- 48.
doi: 10.1109/5326.923267
22 GAO W , HUNG J C . Variable structure control of nonlinear systems: a new approach[J]. IEEE Transactions on Industrial Electronics, 1993, 40 (1): 45- 55.
23 ZHANG L J , QI X , PANG Y J . Adaptive output feedback control based on DRFNN for AUV[J]. Ocean Engineering, 2009, 36 (10): 716- 722.
24 CHEN B S , LEE C H . H∞tracking design of uncertain non-linear SISO systems: adaptive fuzzy approach[J]. IEEE Transactions on Fuzzy Systems, 1996, 4 (1): 32- 43.
25 WANG N , ER M J . Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances[J]. IEEE Transactions on Control System Technology, 2015, 23 (3): 991- 1002.
26 GAO Y , ER M J . Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11 (4): 462- 477.
27 WAI R J , MUTHUSAMY R . Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24 (2): 274- 287.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[5] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[6] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[7] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[8] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[9] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[10] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .