您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (5): 109-117.doi: 10.6040/j.issn.1672-3961.0.2017.442

• 土木工程 • 上一篇    下一篇

水化学条件对高岭土压缩性的影响机理

王者超1,2(),王心语1,韦昌富3,李崴1,段广平1,李帅1,张春雨1   

  1. 1. 山东大学岩土与结构工程研究中心, 山东 济南 250061
    2. 东北大学深部金属矿山安全开采教育部重点实验室, 辽宁 沈阳 110004
    3. 中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室, 湖北 武汉 430071
  • 收稿日期:2017-09-04 出版日期:2018-10-01 发布日期:2017-09-04
  • 作者简介:王者超(1980—),男,山东高唐人,教授,博士生导师,博士,主要研究方向为岩土工程. E-mail:wang_zhechao@hotmail.com
  • 基金资助:
    国家自然科学基金资助项目(51779045);国家自然科学基金资助项目(41572293);中国科学院大学生创新实践训练计划资助项目(Y110061Q01)

The effect of hydrochemical conditions on compression characteristics of kaolinite

Zhechao WANG1,2(),Xinyu WANG1,Changfu WEI3,Wei LI1,Guangping DUAN1,Shuai LI1,Chunyu ZHANG1   

  1. 1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, Shandong, China
    2. Key laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110004, Liaoning, China
    3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
  • Received:2017-09-04 Online:2018-10-01 Published:2017-09-04
  • Supported by:
    国家自然科学基金资助项目(51779045);国家自然科学基金资助项目(41572293);中国科学院大学生创新实践训练计划资助项目(Y110061Q01)

摘要:

研究在不同水化学条件下高岭土的压缩特性,开展了不同化学溶液饱和条件下高岭土的一维固结试验。试验结果表明:在较低压力水平下,Na+或Ca2+明显降低了高岭土的压缩性,但随着离子浓度的增加,高岭土的压缩性又有提高的趋势,而高应力水平下离子浓度对高岭土压缩性的影响不明显;同一浓度下,Ca2+对试样压缩性的影响比Na+更明显;在酸性或碱性条件下高岭土压缩性均较中性条件下有所提高;回弹曲线同样受到水化学条件的影响。试验结果的作用机理为:水化学条件变化对高岭土压缩性的影响以物理-化学机制为主导,阳离子交替吸附作用与溶蚀、沉淀作用是改变土体压缩性的重要因素。为进一步揭示水-土化学作用的力学效应机理提供了依据。

关键词: 水化学条件, 高岭土, 压缩性, 力学模型, 物理-化学模型

Abstract:

In order to investigate the compression characteristics of kaolinite in various hydrochemical conditions, oedometer tests on kaolinite specimens saturated with acidic, alkaline and saline solutions were performed. The results indicated that Na+ and Ca2+ induced the compressibility of specimens significantly in low pressure level, while the increase of ion concentration made a growing trend in the compressibility of kaolinite; in the same concentration, the effect of Ca2+ on the compressibility of specimens was more obvious than Na+; in acidic or alkaline conditions, the compressibility of kaolinite was improved; hydrochemical condition also had effect on the rebound curve. Then the mechanism of the test was analyzed and it was considered that the effect of variation in hydrochemical conditions on compressibility of kaolinite included both mechanical model and physical-chemical model. Cation exchange and adsorption, dissolution and sedimentation were important influential factors of the compressibility of soil. The basis was provided for further revealing the mechanical mechanism of water-soil chemical interaction.

Key words: hydrochemical condition, kaolinite, compressibility, mechanical model, physical-chemical model

中图分类号: 

  • U43

表1

试样初始状态"

土类 设计含水率
ω0/%
干密度
ρd/ (g·cm-3)
试样直径
d/mm
初始高度
h0/mm
颗粒密度
ρs/(g·cm-3)
初始孔隙比
e0
高岭土 48.3 0.858 61.8 20 2.65 2.09

表2

离子溶液配置"

编号 溶质 浓度/(mol·L-1) pH
S1 去离子水 7
S2 NaCl 0.50 7
S3 NaCl 0.10 7
S4 NaCl 0.05 7
S5 CaCl2 0.50 7
S6 CaCl2 0.10 7
S7 CaCl2 0.05 7
S8 NaCl 0.10 4
S9 NaCl 0.10 5
S10 NaCl 0.10 9
S11 NaCl 0.10 10

图1

试验仪器与试样饱和"

图2

高岭土的e-p曲线随离子浓度的变化"

图3

高岭土在不同种类溶液中的e-p曲线"

图4

不同酸碱性溶液中高岭土的e-p曲线"

表3

试样在不同溶液中的总变形量与弹性变形量"

编号 总变形量/
mm
弹性变形量/mm 弹性变形所占比例/%
S1 1.742 0.089 5.09
S2 1.454 0.099 6.78
S3 1.411 0.108 7.67
S4 1.338 0.103 7.71
S5 1.336 0.104 7.76
S6 1.187 0.105 8.82
S7 1.129 0.113 9.98
S8 1.706 0.085 4.96
S9 1.615 0.094 5.80
S10 1.658 0.102 6.16
S11 1.640 0.099 6.04

图5

土颗粒表面电荷示意图"

图6

土颗粒间的胶结作用示意图"

图7

不同Ca2+浓度溶液中各压力水平下的压缩系数"

图8

100~200 kPa荷载下试样压缩系数随Ca2+浓度的变化"

图9

试样在载荷200 kPa下的应变随溶液浓度的变化"

图10

不同酸碱性溶液中各压力水平下的压缩系数"

图11

不同离子浓度下试样的回弹指数"

图12

不同酸碱度溶液中试样的回弹指数"

1 汤连生. 水-土化学作用的力学效应及机理分析[J]. 中山大学学报(自然科学版), 2000, 39 (4): 104- 109.
doi: 10.3321/j.issn:0529-6579.2000.04.024
TANG Liansheng . Mechanical effect of chemical action of water on soil and analysis on its mechanism[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39 (4): 104- 109.
doi: 10.3321/j.issn:0529-6579.2000.04.024
2 顾季威. 酸碱废液侵蚀地基土对工程质量的影响[J]. 岩土工程学报, 1988, 10 (4): 72- 78.
doi: 10.3321/j.issn:1000-4548.1988.04.008
GU Jiwei . The effects of acid-alkali wastewater on the quality of engineering[J]. Chinese Journal of Geotechnical Engineering, 1988, 10 (4): 72- 78.
doi: 10.3321/j.issn:1000-4548.1988.04.008
3 孙重初. 酸液对红粘土物理力学性质的影响[J]. 岩土工程学报, 1989, 11 (4): 89- 93.
doi: 10.3321/j.issn:1000-4548.1989.04.011
SUN Chongchu . The effects of acid wastewater on the physical-mechanical characteristics of red clay[J]. Chinese Journal of Geotechnical Engineering, 1989, 11 (4): 89- 93.
doi: 10.3321/j.issn:1000-4548.1989.04.011
4 徐国庆. 缓冲/回填材料与添加剂的选择[J]. 铀矿地质, 1996, 12 (4): 238- 244.
XU Guoqing . Selection of buffer/backfill materials and their additives[J]. Uranium Geology, 1996, 12 (4): 238- 244.
5 秦冰, 陈正汉, 刘月妙, 等. 高庙子膨润土的胀缩变形特性及其影响因素研究[J]. 岩土工程学报, 2008, 30 (7): 1005- 1010.
doi: 10.3321/j.issn:1000-4548.2008.07.010
QIN Bing , CHEN Zhenghan , LIU Yuemiao , et al. Swelling-shrinkage behaviour of gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (7): 1005- 1010.
doi: 10.3321/j.issn:1000-4548.2008.07.010
6 OLSON R E , MESRI G . Mechanisms controlling compressibility of clays[J]. Journal of Soil Mechanics & Foundations Div, 1970, 96 (SM6): 1865- 1879.
7 DI MAIO C . Exposure of bentonite to salt solution: osmotic and mechanical effects[J]. Geotechnique, 1996, 46 (4): 695- 707.
doi: 10.1680/geot.1996.46.4.695
8 DI MAIO C , SANTOLI L , SCHIAVONE P . Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state[J]. Mechanics of Materials, 2004, 36 (5-6): 435- 451.
doi: 10.1016/S0167-6636(03)00070-X
9 黄振育, 韦昌富, 颜荣涛, 等. 聚四氟乙烯材料在环境岩土工程土工试验中的应用[J]. 桂林理工大学学报, 2013, 33 (3): 499- 503.
doi: 10.3969/j.issn.1674-9057.2013.03.018
HUANG Zhenyu , WEI Changfu , YAN Rongtao , et al. Application of PTFE in environmental geotechnology engineering test[J]. Journal of Guilin University of Technology, 2013, 33 (3): 499- 503.
doi: 10.3969/j.issn.1674-9057.2013.03.018
10 于海浩.孔隙水溶液浓度对黏土力学特性影响规律研究[D].桂林:桂林理工大学, 2015.
YU Haihao. Effects of pore solution concentrations on mechanical properties of clay[D]. Guilin: Guilin University of Technology, 2015.
11 WAHID A S , GAJO A , DI MAGGIO R . Chemo-mechanical effects in kaolinite:Part 1: prepared samples[J]. Geotechnique, 2011, 61 (6): 439- 447.
doi: 10.1680/geot.8.P.067
12 WAHID A S , GAJO A , DI MAGGIO R . Chemo-mechanical effects in kaolinite: Part 2: exposed samples and chemical and phase analyses[J]. Géotechnique, 2011, 61 (6): 449- 457.
doi: 10.1680/geot.8.P.068
13 颜荣涛, 吴二林, 徐文强, 等. 水化学环境变异下黏土物理力学特性研究进展[J]. 长江科学院院报, 2014, 31 (6): 41- 47, 52.
doi: 10.3969/j.issn.1001-5485.2014.06.009
YAN Rongtao , WU Erlin , XU Wenqiang , et al. Research progress of the physical and mechanical responses of clays to the variation of hydrochemical environment[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31 (6): 41- 47, 52.
doi: 10.3969/j.issn.1001-5485.2014.06.009
14 钟孝乐, 詹良通, 龚标, 等. 我国3种典型高岭土的固结、渗透及吸附特性[J]. 浙江大学学报(工学版), 2014, 48 (11): 1947- 1954.
ZHONG Xiaole , ZHAN Liangtong , GONG Biao , et al. Consolidation permeability and adsorption properties of three kinds of typical kaokin clays in China[J]. Journal of Zhejiang University(Engineering Science), 2014, 48 (11): 1947- 1954.
15 中华人民共和国建设部.土工试验方法标准: GB/T 50123—1999[S].北京:中国计划出版社, 1999.
16 王者超, 乔丽苹. 土蠕变性质及其模型研究综述与讨论[J]. 岩土力学, 2011, 32 (8): 2251- 2260.
doi: 10.3969/j.issn.1000-7598.2011.08.002
WANG Zhechao , QIAO Liping . A review and discussion on creep behavior of soil and its models[J]. Rock and Soil Mechanics, 2011, 32 (8): 2251- 2260.
doi: 10.3969/j.issn.1000-7598.2011.08.002
17 王者超, 李术才. 高应力下颗粒材料一维力学特性研究:Ⅰ:压缩性质[J]. 岩土力学, 2010, 31 (10): 3051- 3057.
doi: 10.3969/j.issn.1000-7598.2010.10.004
WANG Zhechao , LI Shucai . One-dimensional mechanical behavior of granular material under high stresses:Part Ⅰ: compression behavior[J]. Rock and Soil Mechanics, 2010, 31 (10): 3051- 3057.
doi: 10.3969/j.issn.1000-7598.2010.10.004
18 王者超, 李术才. 高应力下颗粒材料一维力学特性研究:Ⅱ:蠕变性质[J]. 岩土力学, 2010, 31 (11): 3392- 3396.
doi: 10.3969/j.issn.1000-7598.2010.11.006
WANG Zhechao , LI Shucai . One-dimensional mechanical behavior of granular material under high stresses:Part Ⅰ: creep behavior[J]. Rock and Soil Mechanics, 2010, 31 (11): 3392- 3396.
doi: 10.3969/j.issn.1000-7598.2010.11.006
19 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
20 谭罗荣, 张梅英. 一种特殊土微观结构特性的研究[J]. 岩土工程学报, 1982, 4 (2): 26- 35.
doi: 10.3321/j.issn:1000-4548.1982.02.003
TAN Luorong , ZHANG Meiying . The research on microscopic structure properties of a particular soil[J]. Chinese Journal of Geotechnical Engineering, 1982, 4 (2): 26- 35.
doi: 10.3321/j.issn:1000-4548.1982.02.003
21 宋宇, 高利, 陈学军, 等. 红粘土微结构特征与变形机理[J]. 地质灾害与环境保护, 2015, 26 (3): 73- 76.
doi: 10.3969/j.issn.1006-4362.2015.03.015
SONG Yu , GAO Li , CHEN Xuejun , et al. Characteristics and deformation mechanism of microstructure for red clay[J]. Journal of Geological Hazards and Environment Preservation, 2015, 26 (3): 73- 76.
doi: 10.3969/j.issn.1006-4362.2015.03.015
22 张先伟, 孔令伟, 陈成, 等. 水化学环境对湛江组黏土结构强度的影响研究[J]. 岩土工程学报, 2017, 39 (11): 1967- 1975.
doi: 10.11779/CJGE201711003
ZHANG Xianwei , KONG Lingwei , CHEN Cheng , et al. Effects of hydrochemistry on structural strength of Zhanjiang formation clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (11): 1967- 1975.
doi: 10.11779/CJGE201711003
23 汪民. 饱水粘性土中粘粒与水相互作用的初步探讨[J]. 水文地质工程地质, 1987, 13 (3): 1- 5, 12.
WANG Min . The interaction between water and clay particles in saturated clayey soils[J]. Hydrogeology & Engineering Geology, 1987, 13 (3): 1- 5, 12.
24 于明波, 颜荣涛, 李爱军, 等. 水化学效应对自然土物理力学特性的影响[J]. 工程勘察, 2017, 45 (5): 7- 15.
YU Mingbo , YAN Rongtao , LI Aijun , et al. Chemical effects of pore solution on physical and mechanical characteristics of natural clayey soils[J]. Geotechnical Investigation & Surveying, 2017, 45 (5): 7- 15.
25 王者超, 乔丽苹, 李术才. 荷载水平和孔隙比对土次压缩性质影响研究[J]. 土木工程学报, 2013, 46 (1): 112- 118.
WANG Zhechao , QIAO Liping , LI Shucai . Influence of load level and void ratio on secondary compressibility of soil[J]. China Civil Engineering Journal, 2013, 46 (1): 112- 118.
26 常防震, 陈宝, 朱嵘. 粘土微结构特征与变形机理研究进展[J]. 地下空间与工程学报, 2009, 5 (增刊2): 1573- 1579.
CHANG Fangzhen , CHEN Bao , ZHU Rong . Advances in study on microstructural characteristic and deformation mechanism of clay[J]. Chinese Journal of Underground Space and Engineering, 2009, 5 (Suppl.2): 1573- 1579.
27 孙维林. 粘土理化性质[M]. 北京: 地质出版社, 1992.
28 奥西波夫B И.粘土类土和岩石的强度与变形性能的本质[M].李生林,张之一,译.北京:地质出版社, 1985: 48-52.
29 HICHER P Y , WAHYUDI H , TESSIER D . Microstructural analysis of inherent and induced an isotropy in clay[J]. Mechanics of Cohesive-Frictional Materials, 2000, 3 (5): 341- 371.
30 周建, 邓以亮, 曹洋, 等. 杭州饱和软土固结过程微观结构试验研究[J]. 中南大学学报(自然科学版), 2014, 45 (6): 1998- 2005.
ZHOU Jian , DENG Yiliang , CAO Yang , et al. Experimental study of microstructure of Hangzhou saturated soft soil during consolidation process[J]. Journal of Central South University (Science and Technology), 2014, 45 (6): 1998- 2005.
[1] 王娜,陈国栋,陈怡. 基于改进SPH的皮肤表面血流模拟算法[J]. 山东大学学报(工学版), 2016, 46(1): 22-27.
[2] 张绪涛1,2,张强勇1,曹冠华1,许孝滨1. 成型压力对铁-晶-砂混合相似材料性质的影响[J]. 山东大学学报(工学版), 2013, 43(2): 89-95.
[3] 谷安 方志军. 机器人触须传感器的静态工作机理[J]. 山东大学学报(工学版), 2009, 39(5): 84-86.
[4] 李勇 杨强 朱维申 李术才 张强勇 王汉鹏. 静态电阻与光纤应变测试技术在岩土地质力学模型试验中的应用[J]. 山东大学学报(工学版), 2009, 39(3): 129-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .
[2] 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20 -26 .
[3] 唐庆顺,金璐,李国栋,吴春富. 基于自适应终端滑模控制器的机械手跟踪控制[J]. 山东大学学报(工学版), 2016, 46(5): 45 -53 .
[4] 张建明, 刘泉声, 唐志成, 占婷, 蒋亚龙. 考虑剪切变形历史影响的节理峰值剪切强度准则[J]. 山东大学学报(工学版), 0, (): 77 -81 .
[5] 王换,周忠眉. 一种基于聚类的过抽样算法[J]. 山东大学学报(工学版), 2018, 48(3): 134 -139 .
[6] 阳爱民1,周咏梅1,邓河2,周剑峰3. 一种网络流量分类特征的产生及选择方法[J]. 山东大学学报(工学版), 2010, 40(5): 1 -7 .
[7] 尤鸣宇,陈燕,李国正. 不均衡问题中的特征选择新算法:Im-IG[J]. 山东大学学报(工学版), 2010, 40(5): 123 -128 .
[8] 吴国瑶,马立勇. 基于B样条FFD模型配准的虹膜图像融合方法[J]. 山东大学学报(工学版), 2010, 40(5): 24 -27 .
[9] 肖乔, 裴继红, 王荔霞, 龚志成. 基于多通道Gabor滤波模糊融合的遥感图像舰船检测[J]. 山东大学学报(工学版), 0, (): 29 -35 .
[10] 马相明, 孙霞, 张强. 轮式装载机典型作业工况构建与分析[J]. 山东大学学报(工学版), 0, (): 82 -87 .