山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (5): 95-102.doi: 10.6040/j.issn.1672-3961.0.2018.169
Dongdong SHEN(),Fengyu ZHOU*(),Mengyuan LI,Shuqian WANG,Renhe GUO
摘要:
针对传统无线定位模型对指纹数据库容错性低、抗噪能力弱等问题,提出一种基于数据融合的集成深度神经网络无线定位方法,从原始指纹数据库中按照一定比例随机取样生成各基学习器的训练数据,能够有效克服异常样本与有噪数据对无线定位系统带来的干扰;在指纹数据库构建过程中,提出Gauss-Occupied (G-O)数据扩充方法以解决无线指纹数据库样本容量小的局限,大幅度降低人工采集的成本,进一步提高样本空间的表征范围。试验结果表明:提出的模型不仅能够有效提高无线定位系统的平均定位精度与抗噪能力,而且能够明显降低定位过程中出现的单点最大误差。
中图分类号:
1 | TORTEEKA P, XIU C. Indoor positioning based on WiFi fingerprint technique using fuzzy K-nearest neighbor[C]//International Bhurban Conference on Applied Sciences and Technology. Islamabad, Pakistan: IEEE, 2014: 461-465. |
2 | YANG R, ZHANG H. RSSI-based fingerprint positioning system for indoor wireless network[M]//Intelligent Computing in Smart Grid and Electrical Vehicles. Berlin Heidelberg, Germany:Springer, 2014:313-319. |
3 | 曾碧, 毛勤. 改进的室内三维模糊位置指纹定位算法[J]. 山东大学学报(工学版), 2015, 45 (3): 22- 27. |
ZENG Bi , MAO Qin . Improved indoor 3-D fuzzy position fingerprint localization algorithm[J]. Journal of Shandong University(Engineering Science), 2015, 45 (3): 22- 27. | |
4 | ZHANG W, HUA X, YU K, et al. Domain clustering based WiFi indoor positioning algorithm[C]//International Conference on Indoor Positioning and Indoor Navigation. Alcalá de Henares, Spain: IEEE, 2016: 1-5. |
5 |
XIE Y , WANG Y , NALLANATHAN A , et al. An improved K-Nearest-Neighbor indoor localization method based on spearman distance[J]. IEEE Signal Processing Letters, 2016, 23 (3): 351- 355.
doi: 10.1109/LSP.2016.2519607 |
6 | GE X, QU Z. Optimization WIFI indoor positioning KNN algorithm location-based fingerprint[C]//IEEE International Conference on Software Engineering and Service Science.Beijing, China: IEEE, 2017: 135-137. |
7 | ZHU Y J , DENG Z L , LIU W L , et al. Multi-classification algorithm for indoor positioning based on support vector machine[J]. Computer Science, 2012, 39 (4): 32- 35. |
8 | LIU S, SI P, XU M, et al. Edge big data-enabled low-cost indoor localization based on Bayesian analysis of RSS[C]//Wireless Communications and Networking Conference (WCNC). San Francisco, USA: IEEE, 2017: 1-6. |
9 | DING G, TAN Z, ZHANG J, et al. Fingerprinting localization based on affinity propagation clustering and artificial neural networks[C]//Wireless Communications and Networking Conference. Shanghai, China: IEEE, 2013: 2317-2322. |
10 |
刘侃, 张伟, 张伟东, 等. 一种基于深度神经网络的无线定位方法[J]. 计算机工程, 2016, 42 (7): 82- 85.
doi: 10.3969/j.issn.1000-3428.2016.07.014 |
LIU Kan , ZHANG Wei , ZHANG Weidong , et al. A wireless positioning method based on deep neural network[J]. Computer Engineering, 2016, 42 (7): 82- 85.
doi: 10.3969/j.issn.1000-3428.2016.07.014 |
|
11 | QIU X, ZHANG L, REN Y, et al. Ensemble deep learning for regression and time series forecasting[C]//Computational Intelligence in Ensemble Learning. Orlando, USA: IEEE, 2015: 1-6. |
12 | ZHOU X, XIE L, ZHANG P, et al. An ensemble of deep neural networks for object tracking[C]//IEEE International Conference on Image Processing. Paris, France: IEEE, 2015: 843-847. |
13 |
TSENG P H , FENG K T , LIN Y C , et al. Wireless location tracking algorithms for environments with insufficient signal sources[J]. IEEE Transactions on Mobile Computing, 2009, 8 (12): 1676- 1689.
doi: 10.1109/TMC.2009.75 |
14 |
WANG G , SO M C , LI Y . Robust convex approximation methods for TDOA-based localization under NLOS conditions[J]. IEEE Transactions on Signal Processing, 2016, 64 (13): 3281- 3296.
doi: 10.1109/TSP.2016.2539139 |
15 | TOMIC S , BEKO M , RUI D . 3-D target localization in wireless sensor network using RSS and AOA measurements[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (4): 1. |
16 |
马春龙, 张启英. 基于高斯函数及分批估计融合理论的无线网络定位算法[J]. 长春工业大学学报(自然科学版), 2012, 33 (1): 59- 63.
doi: 10.3969/j.issn.1674-1374-B.2012.01.014 |
MA Chunlong , ZHANG Qiying . Wireless network positioning algorithm based on Gauss function and batch estimation fusion[J]. Journal of Changchun University of Technology(Natural Science Edition), 2012, 33 (1): 59- 63.
doi: 10.3969/j.issn.1674-1374-B.2012.01.014 |
|
17 | VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//International Conference on Machine Learning. Helsinki, Finland: ACM, 2008: 1096-1103. |
18 | DAHL G E, SAINATH T N, HINTON G E. Improving deep neural networks for LVCSR using rectified linear units and dropout[C]//IEEE International Conference on Acoustics, Speech and Signal Processing.Vancouver. Canada: IEEE, 2013: 8609-8613. |
19 | SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958. |
20 |
REN Y , ZHANG L , SUGANNTHAN P N . Ensemble classification and regression-recent developments, applications and future directions[J]. IEEE Computational Intelligence Magazine, 2016, 11 (1): 41- 53.
doi: 10.1109/MCI.2015.2471235 |
21 | MORETTI F , PIZZUTI S , PANZIERI S , et al. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling[J]. Neurocomputing, 2015, 167 (C): 3- 7. |
22 | 王田苗, 陶永, 魏洪兴, 等. 基于智能空间的家庭服务机器人混合定位方法[J]. 北京航空航天大学学报, 2009, 35 (2): 231- 235. |
WANG Tianmiao , TAO Yong , WEI Hongxing , et al. Hybrid location method for home service robot based on intelligent space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35 (2): 231- 235. |
[1] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54. |
[2] | 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56. |
[3] | 刘帆,陈泽华,柴晶. 一种基于深度神经网络模型的多聚焦图像融合方法[J]. 山东大学学报(工学版), 2016, 46(3): 7-13. |
[4] | 王立宏,李强. 旅行商问题的一种选择性集成求解方法[J]. 山东大学学报(工学版), 2016, 46(1): 42-48. |
[5] | 陈大伟,闫昭*,刘昊岩. SVD系列算法在评分预测中的过拟合现象[J]. 山东大学学报(工学版), 2014, 44(3): 15-21. |
[6] | 房晓南1,2,张化祥1,2*,高爽1,2. 基于SMOTE和随机森林的Web spam检测[J]. 山东大学学报(工学版), 2013, 43(1): 22-27. |
[7] | 张伶卫,万文强. 基于云计算平台的代价敏感集成学习算法研究[J]. 山东大学学报(工学版), 2012, 42(4): 19-23. |
[8] | 谢伙生,刘敏. 一种基于主动学习的集成协同训练算法[J]. 山东大学学报(工学版), 2012, 42(3): 1-5. |
[9] | 李小斌1, 李世银2. 时间序列早期分类的多分类器集成方法[J]. 山东大学学报(工学版), 2011, 41(4): 73-78. |
[10] | 李霞1,王连喜2,蒋盛益1. 面向不平衡问题的集成特征选择[J]. 山东大学学报(工学版), 2011, 41(3): 7-11. |
|