山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 36-41.doi: 10.6040/j.issn.1672-3961.0.2016.408
刘建美,马帅奇*
LIU Jianmei, MA Shuaiqi*
摘要: 根据随机用户均衡问题的特点构造一种基于BFGS校正公式和Armijo线搜索的截断拟牛顿法。介绍截断拟牛顿方程的构造过程及其算法的具体步骤;针对随机用户均衡模型的特点给出算法的收敛性和两个需注意的问题,并将此算法应用于一个路网。数值算例分析表明:所构造算法在迭代次数和误差方面均优于截断牛顿法,改进截断拟牛顿法可以避免二阶Hessian矩阵的计算,还可以用于某些Hessian矩阵不正定问题的求解。
中图分类号:
[1] SHEFFI Y, POWELL W B. An algorithm for the equilibrium assignment problem with random link times[J]. Networks, 1982, 12(2): 191-207. [2] MAHER M. Algorithms for logit-based stochastic user equilibrium assignment[J]. Transportation Research Part B, 1998, 32(8): 539-549. [3] DIAL R B. A probabilistic multipath traffic assignment model which obviates path enumeration[J]. Transportation Research, 1971, 5(2): 83-111. [4] BELL M G. Alternatives to Dial's logit assignment algorithm[J]. Transportation Research Part B, 1995, 29(4): 287-295. [5] CHEN M, ALFA A S. Algorithms for solving Fisk's stochastic traffic assignment model[J]. Transportation Research Part B, 1991, 25(6): 405-412. [6] BEKHOR S, TOLEDO T. Investigating path-based solution algorithms to the stochastic user equilibrium problem[J]. Transportation Research Part B, 2005, 39(3): 279-295. [7] ZHOU B, LI X, HE J. Exploring trust region method for the solution of logit-based stochastic user equilibrium problem[J]. European Journal of Operational Research, 2014, 239(1): 46-57. [8] ZHOU B, BLIEMER M C J, LI X, et al. A modified truncated Newton algorithm for the logit-based stochastic user equilibrium problem[J]. Applied Mathematical Modelling, 2015, 39(18): 5415-5435. [9] CEYLAN H, BELL M G H. Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion[J]. Transportation Research Part B, 2005, 39(2): 169-185. [10] LIU J, MA S, HUANG C, et al. A dimension-reduced method of sensitivity analysis for stochastic user equilibrium assignment model[J]. Applied Mathematical Modelling, 2010, 34(2): 325-333. [11] CONNORS R D, SUMALEE A, WATLING D P. Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes[J]. Transportation Research Part B, 2007, 41(6): 593-615. [12] HBAR GERA. Origin-based algorithm for the traffic assignment problem[J]. Transportation Science, 2002, 36(4): 398-417. [13] WEI C, ASAKURA Y. A Bayesian approach to traffic estimation in stochastic user equilibrium networks[J]. Procedia-Social and Behavioral Sciences, 2013, 80(11): 591-607. [14] YU Q, FANG D, DU W. Solving the logit-based stochastic user equilibrium problem with elastic demand based on the extended traffic network model[J]. European Journal of Operational Research, 2014, 239(1): 112-118. [15] MENG Q, LAM W H K, YANG L. General stochastic user equilibrium traffic assignment problem with link capacity constraints[J]. Journal of Advanced Transportation, 2008, 42(4): 429-465. [16] MENG Q, LIU Z. Mathematical models and computational algorithms for probit-based asymmetric stochastic user equilibrium problem with elastic demand[J]. Transportmetrica, 2012, 8(4): 261-290. [17] FISK C. Some developments in equilibrium traffic assignment[J]. Transportation Research Part B, 1980, 14(3): 243-255. [18] LEBLANC L J, MORLOK E K, PIERSKALLA W P. An efficient approach to solving the road network equilibrium traffic assignment problem[J]. Transportation Research, 1975, 9(5): 309-318. [19] HAN S. A route-based solution algorithm for dynamic user equilibrium assignments[J]. Transportation Research Part B, 2007, 41(10): 1094-1113. [20] DAMBERG O, LUNDGREN J T, PATRIKSSON M. An algorithm for the stochastic user equilibrium problem[J]. Transportation Research Part B, 1996, 30(2): 115-131. [21] YUAN G, WEI Z. Convergence analysis of a modified BFGS method on convex minimizations[J]. Computational Optimization and Applications, 2010, 47(2): 237-255. |
[1] | 聂聪,吕振肃 . 基于可变数据重用因子的变步长仿射投影算法[J]. 山东大学学报(工学版), 2008, 38(1): 36-38 . |
|