山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 124-130.doi: 10.6040/j.issn.1672-3961.0.2017.050
• • 上一篇
袁莎莎,于海波,高明明,王新华*
YUAN Shasha, YU Haibo, GAO Mingming, WANG Xinhua*
摘要: 通过探究有机碳源缺乏废水对成熟好氧颗粒污泥物化特性、细菌活性、胞外聚合物(extracelluler polymer substances, EPS)及结构稳定性的影响,研究实际污水处理过程中缺乏有机碳源对好氧颗粒污泥稳定性及硝化活性的影响,进而检测实际污水处理中好氧颗粒污泥的耐冲击能力。结果表明:在有机碳源缺乏的条件下,成熟颗粒污泥中氨氧化细菌(ammonia oxidizing bacteria, AOB)和硝化细菌(nitrite oxidation bacteria, NOB)活性升高,60 d左右可实现较高的硝化活性;成熟好氧颗粒污泥粒径减小,丝状菌消失,球菌增多,颗粒污泥更加密实;EPS质量浓度及多糖(polysaccharide, PS)与蛋白质(proteins, PN)质量比升高;在有机碳源缺乏的条件下,成熟好氧颗粒污泥并未完全解体,具有较强的耐冲击能力。本研究证实了好氧颗粒污泥处理缺乏有机碳源废水的潜力,为好氧颗粒污泥的实际应用提供了理论基础。
中图分类号:
[1] MU Y, YU H Q. Biological hydrogen production in a UASB reactor with granules. I: physicochemical characteristics of hydrogen-producing granules[J]. Biotechnology and Bioengineering, 2006, 94(5):980-987. [2] ADAV S S, CHEN M Y, LEE D J, et al. Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis[J]. Biotechnology and Bioengineering, 2007, 96(5):844-852. [3] 李善评,赵玉晓, 乔鹏, 等.好氧颗粒污泥的培养及基质降解和污泥生长动力学分析[J]. 山东大学学报(工学版), 2008, 38(3):95-98. LI Shanping, ZHAO Yuxiao, QIAO Peng, et.al. Cultivation of aerobic granular sludge and the kinetics of substrate degradation and biomass growth[J]. Journal of Shandong University(Engineering Science), 2008, 38(3):95-98. [4] PRONK M, DE KREUK M K, DE BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015, 84:207-217. [5] LIU Y Q, TAY J H. Fast formation of aerobic granules by combining strong hydraulic selection pressure with over stressed organic loading rate[J]. Water Research, 2015, 80:256-266. [6] LIU Y Q, KONG Y, TAY J H, et al. Enhancement of start-up of pilot-scale granular SBR fed with real wastewater[J]. Separation and Purification Technology, 2011, 82(1):190-196. [7] YANG F L, WANG X H, ZHANG H M, et al. A review on the essential role of substrate on aerobic granulation[J]. International Journal of Environment and Waste Management, 2011, 7(1/2):67-79. [8] KIM D, KIM T S, RYU H D, et al. Treatment of low carbon-to-nitrogen wastewater using two-stage sequencing batch reactor with independent nitrification[J]. Process Biochemistry, 2008, 43(4):406-413. [9] LUO J, HAO T, WEI L, et al. Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J]. Water Research, 2014, 62(7):127-135. [10] WANG X H, ZHANG H M, YANG F L, et al. Improved stability and performance of aerobic granules under stepwise increased selection pressure[J]. Enzyme and Microbial Technology, 2007, 41(3):205-211. [11] LIU Y, YANG S F, TAY J H. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios[J]. Applied Microbiology and Biotechnology, 2003, 61(5):556-561. [12] YANG S F, TAY J H, LIU Y. Respirometric activities of heterotrophic and nitrifying populations in aerobic granules developed at different substrate N/COD ratios[J]. Current Microbiology, 2004, 49(1):42-46. [13] CARUCCI A, CHIAVOLA A, MAJONE M, et al. Treatment of tannery wastewater in a sequencing batch reactor[J]. Water Science and Technology, 1999, 40(1):253-259. [14] ZHANG B, CHEN Z, QIU Z G, et al. Dynamic and distribution of ammonia-oxidizing bacteria communities during sludge granulation in an anaerobic-aerobic sequencing batch reactor[J]. Water Research, 2011, 45(18):6207-6216. [15] FROLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8):1749-1758. [16] LOEWUS F A. Improvement in anthrone method for determination of carbohydrates[J]. Analytical Chemistry, 1952, 24(1):219-219. [17] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1):248-254. [18] HOU X L, LIU S T, ZHANG Z T. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge[J]. Water Research, 2015, 75:51-62. [19] RUIJSSENAARS H J, STINGELE F, HARTMANS S. Biodegradability of food-associated extracellular polysaccharides[J]. Current Microbiology, 2000, 40(3):194-199. [20] WANG Z W, LIU Y, TAY J H. Biodegradability of extracellular polymeric substances produced by aerobic granules[J]. Applied Microbiology and Biotechnology, 2007, 74(2):462-466. [21] ZHANG X Q, BISHOP P L. Biodegradability of biofilm extracellular polymeric substances[J]. Chemosphere, 2003, 50(1):63-69. [22] JANG A, YOON Y H, KIM I S, et al. Characterization and evaluation of aerobic granules in sequencing batch reactor[J]. Journal of Biotechnology, 2003, 105(1-2):71-82. [23] MATSUMOTO S, KATOKU M, SAEKI G, et al. Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses[J]. Environ Microbiol, 2010, 12(1):192-206. [24] BASSIN J P, KLEEREBEZEM R, ROSADO A S, et al. Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors[J]. Environmental Science & Technology, 2012, 46(3):1546-1555. [25] LIU Y, LIU Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors[J]. Biotechnology Advances, 2006, 24(1):115-127. [26] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances(EPS)of microbial aggregates in biological wastewater treatment systems:a review[J]. Biotechnology Advances, 2010, 28(6):882-894. [27] 王永飞, 张捍民, 王新华, 等. 曝气量对SBAR中好氧颗粒污泥特性的影响[J]. 环境科学, 2008, 29(6):1598-1603. WANG Yongfei, ZHANG Hanmin, WANG Xinhua, et al. Effects of aeration intensity on characteristics of aerobic granules in sequencing batch airlift reactor(SBAR)[J]. Environmental Science, 2008, 29(6):1598-1603. [28] 刘燕,王越兴,莫华娟,等. 有机底物对活性污泥胞外聚合物的影响[J]. 环境化学, 2004, 23(3):252-257. LIU Yan, WANG Yuexing, MO Huajuan, et al. Effect of organic substrate on the formation of extracellular polymeric substrates in activated sludge[J]. Environmental Chemistry, 2004, 23(3):252-257. [29] ZHU L, LYU M L, DAI X, et al. Role and significance of extracellular polymeric substances on the property of aerobic granule[J]. Bioresource Technology, 2012, 107(2):46-54. [30] ZHANG H M, HE Y L, JIANG T, et al. Research on characteristics of aerobic granules treating petrochemical wastewater by acclimation and co-metabolism methods[J]. Desalination, 2011, 279(1-3):69-74. [31] ADAV S S, LEE D J, TAY J H. Extracellular polymeric substances and structural stability of aerobic granule[J]. Water Research, 2008, 42(6-7):1644-1650. [32] KOCATURK I, ERGUDER T H. Influent COD/TAN ratio affects the carbon and nitrogen removal efficiency and stability of aerobic granules[J]. Ecological Engineering, 2016, 90:12-24. [33] 张丽丽, 陈效, 陈建孟, 等. 胞外多聚物在好氧颗粒污泥形成中的作用机制[J]. 环境科学, 2007, 28(4):795-799. ZHANG Lili, CHEN Xiao, CHEN Jianmeng, et al. Role mechanism of extracellular polymeric substances in the formation of aerobic granular sludge[J]. Environmental Science, 2007, 28(4):795-799. [34] 王浩宇, 苏本生, 黄丹, 等. 好氧污泥颗粒化过程中Zeta 电位与EPS 的变化特性[J]. 环境科学, 2012, 33(5):1614-1620. WANG Haoyu,SU Bensheng, HUANG Dan, et al. Profiles of zeta potential and EPS in granulation process of aerobic sludge[J]. Environmental Science, 2012, 33(5):1614-1620. |
[1] | 李善评,赵玉晓,乔鹏,冯正志 . 好氧颗粒污泥的培养及基质降解和污泥生长动力学分析[J]. 山东大学学报(工学版), 2008, 38(3): 95-98 . |
[2] | 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56-59 . |
[3] | . 好氧颗粒污泥的性质及形成机理的探讨[J]. 山东大学学报(工学版), 2006, 36(3): 116-119 . |
|