您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版)

• 其他 • 上一篇    下一篇

基于EEMD和ICA方法的驾驶室内噪声源时频分析

王丽,周以齐,于刚,米永振   

  1. 山东大学机械工程学院高效洁净机械制造教育部重点实验室, 山东 济南 250061
  • 收稿日期:2013-06-14 出版日期:2014-04-20 发布日期:2013-06-14
  • 通讯作者: 周以齐(1957- ),男,山东济南人,教授,博士,主要研究方向为机械系统动力学,振动噪声控制,虚拟工程. E-mail:yqzhou@sdu.edu.cn
  • 作者简介:王丽(1979- ),女,湖北十堰人,博士研究生,主要研究方向为振动噪声控制与信号处理. E-mail:Lilywang460@foxmail.com
  • 基金资助:
    济南市高校自主创新计划资助项目(201303073)

Time-frequency analysis of cabin noise based on ensemble empirical mode decomposition and independent component analysis#br#

WANG Li, ZHOU Yiqi, YU Gang, MI Yongzhen   

  1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of  Ministry of Education,
    School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2013-06-14 Online:2014-04-20 Published:2013-06-14

摘要: 为有效控制工程机械驾驶室内噪声,利用集合经验模态分解(ensemble empirical mode decomposition, EEMD)后的本征模函数作为稳定独立成分分析(independent component analysis, ICA)算法中的多个虚拟通道,提出了基于EEMD和ICA相结合的驾驶室内噪声盲源分离方法。通过分析仿真信号验证了EEMD-ICA方法研究复杂非平稳信号可行。结合相干分析、时频分析方法研究推土机驾驶室内噪声特性。结果表明,柴油机的1/2阶、1阶转动频率是驾驶室内相关零部件的振动辐射噪声的主要激励来源,柴油机的燃烧噪声也是室内噪声的来源。通过相干分析与时频分析相结合的技术可较准确实现噪声源定位,结合测试对象的相关常识可实现对噪声类型判别、噪声传入途径等复杂的问题进行研究,为进一步实现驾驶室内噪声治理、故障诊断,提供经济实用的分析手段。

关键词: 集合经验模态分解, 时频分析, 独立成分分析, 噪声源识别, 驾驶室内噪声

Abstract: In order to effectively control cabin noise and improve noise quality, combined techniques of ensemble empirical mode decomposition (EEMD) and an improvement of independent component analysis (ICA) were applied to analysze cabin noise. Intrinsic mode functions resulting from EEMD analysis were used as the virtual channels of ICA, which solved an undetermined problem of blind source identification from single sampling signal. The feasibility of EEMD-ICA method for complex non-stationary signals was verified by analyzing the simulated signals. With the experiment and coherence analysis for cabin interior and outside noise and vibration signals of a bulldozer, the technique of EEMD-ICA was effective on the noise source separation and identification. Meanwhile, techniques of coherence analysis and time-frequency analysis were used for accurate noise sources identification. The results showed that the main cabin noise source was combustion noise of diesel engine and mechanical radiation noise of cabin parts caused by 1/2 order and 1 order rotation frequency of the diesel engine. And generation details of noise source, transmission paths of air-borne or structure-borne noise were well analyzed in order to control the interior noise and identify faults by the techniques of coherence analysis and time-frequency analysis.

Key words: cabin noise, ensemble empirical mode decomposition, independent component analysis, noise source identification, time-frequency analysis

中图分类号: 

  • TK402
[1] 高爽1,2,张化祥1,2*,房晓南1,2. 基于独立成分分析和协同训练的垃圾网页检测[J]. 山东大学学报(工学版), 2013, 43(2): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!