您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 112-118.doi: 10.6040/j.issn.1672-3961.0.2016.326

• • 上一篇    下一篇

船用起重机吊重摇摆的动态分析

韩广冬,张桐,陈海泉,王生海,张金男   

  1. 大连海事大学轮机工程学院, 辽宁 大连 116026
  • 收稿日期:2016-08-18 出版日期:2017-02-20 发布日期:2016-08-18
  • 作者简介:韩广冬(1991— ),男,河北沧州人,硕士研究生,主要研究方向为波浪补偿和船用起重机减摇.E-mail:18842602951@163.com
  • 基金资助:
    中央高校基本科研业务费专项资助项目(3132016345,3132016356);辽宁省自然科学基金资助项目(2015020132)

Payload pendulation dynamic analysis of ship-mounted crane

HAN Guangdong, ZHANG Tong, CHEN Haiquan, WANG Shenghai, ZHANG Jinnan   

  1. College of Marine Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
  • Received:2016-08-18 Online:2017-02-20 Published:2016-08-18

摘要: 基于船舶在海浪中的运动导致吊重的摆动问题,利用吊重系统的空间位置关系得到吊重的运动方程,采用拉格朗日方程建立船用起重机吊重系统的运动学模型,使用Matlab/Simulink软件对运动学模型进行仿真建模,根据船舶在规则波浪中的运动,详细分析不同的吊绳长度、激励频率、起落速度下吊重摆动情况,并进行比对。结果表明:吊重的摆角随绳长的增加呈现出先增加后减小的趋势;吊重的摆幅随着激励频率不断接近系统固有频率而增加;提高起升速度对吊重的摇摆有增强作用,提高下降速度对吊重的摆角有抑制作用。通过搭建试验平台进行试验,试验结果验证了仿真结果的准确性。

关键词: 船用起重机, Matlab/Simulink软件, 吊重系统, 摇摆, 运动学模型

Abstract: The pendulation of payload was caused by the motion of ship which induced by wave. The motion equation was obtained by means of the relative position of the payload, The kinematics model of ship-mounted crane payload system was established using Lagrange equation, the dynamic was carried out in Matlab/Simulink simulation environment, the influence of rope length, excitation frequency and lifting speed on payload pendulation was analyzed in a comparative manner. The simulation results showed that the payload swing angle increased first and then decreased with the increasing of the rope length; meanwhile, the swing angle increased with the excitation frequency approaching the natural frequency of the system; finally, the swing angle tended to increase with the increasing of the lifting speed, however, the swing angle decreased with the increasing of the lowering speed. Experiment was carried out, and the accuracy of the simulation results was verified.

Key words: ship-mounted crane, payload system, pendulation, kinematics model, Matlab/Simulink software

中图分类号: 

  • U664.4+3
[1] 王学林,尤心一,胡于进. 规则波作用下起重船吊重的动力学分析[J].中国机械工程,2010,9:1077-1082. WANG Xuelin, YOU Xinyi, HU Yujin. Cargo pendulation analysis of moored crane ship under regular waves[J]. China Mechanical Engineering, 2010, 9:1077-1082.
[2] HENRY R J, MASOUD Z N, NAYFEH A H, et al. Cargo pendulation reduction of ship-mounted cranes via boom-luff angle actuation[J]. Journal of Vibration and Control, 2001, 7(8):1253-1264.
[3] CHIN C, NAYFEH A H, ABDEL-RAHMAN E. Nonlinear dynamics of a boom crane[J]. Journal of Vibration and Control, 2001, 7(2):199-220.
[4] CHIN C M, NAYFEH A H. Dynamics and control of ship-mounted cranes[J]. Journal of Vibration and Control, 2001, 7(6):891-904.
[5] ELLERMANN K, KREUZER E, MARKIEWICZ M. Nonlinear dynamics in the motion of a floating cranes[J]. Multibody System Dynamics, 2003, 9(4):377-387.
[6] PARK K P, CHA J R, LEE K Y, et al. Modeling of multi-boom floating crane for lifting analysis of offshore wind turbine[J]. Transactions of the Korean Society of Mechanical Engineers A, 2011, 35:115-120.
[7] MILES J W. Stability of force oscillations of a spherical pendulum[J]. Journal of the Acoustical Society of America, 1962, 20(1):21-32.
[8] MILES J W. Resonant motion of a spherical pendulum[J]. Physica D Nonlinear Phenomena, 1984, 11(3):309-323.
[9] PATEL M, BROWN D, WITZ J A. Operability analysis for a manual crane vessel[J]. Transaction of the Royal Institute of Naval Architects, 1987, 129:103-113.
[10] MCCORMICK F J, WITZ J A. An investigation into the parametric excitation of suspended loads during crane vessel operations[J]. Underwater Technology, 1993, 19:30-39.
[11] WITZ J A. Parametric excitation of crane loads in moderate sea states[J]. Ocean Engineering, 1995, 22(4):411-420.
[12] SCHELLIN T E, JIANG T, SHARMA S D. Crane ship response to wave groups[J]. Journal of Offshore Mechanics and Arctic Engineering, 1991, 113(3):211-218.
[13] ELLERMANN K, KREUZER E. Moored crane vessels in regular waves[J]. Solid Mechanics and its Applications, 2000, 77:105-113.
[14] MALEKI EA. Dynamics and control of a small-scale boom crane[J]. Journal of Computational and Nonlinear Dynamics, 2011, 6(3):921-928.
[15] POSIADALA B, SKALMIERSKI B, TOMSKI L. Motion of the lifted load brought by a kinematic forcing of the crane telescopic boom[J]. Mechanism and Machine Theory, 1990, 25(5):547-556.
[16] REN Huili, WANG Xuelin, HU Yujin, et al. Dynamic response analysis of a moored crane-ship with a flexible boom[J]. Journal of Zhejiang University Science A, 2008, 9(1):26-31.
[17] 李震震. 船用起重机吊物波浪补偿控制研究[D]. 大连:大连理工大学, 2014. LI Zhenzhen. Research on wave compensation of marine crane hanging object[D]. Dalian:Dalian University of Technology, 2014.
[18] 刘伟. 起重船吊物动力响应及主动控制研究[D]. 大连:大连理工大学, 2013. LIU Wei. Research on dynamic response and active control of the floating crane hanging object[D]. Dalian:Dalian University of Technology, 2013.
[1] 袁丽,田国会*,李国栋. #br# NAO机器人的视觉伺服物品抓取操作[J]. 山东大学学报(工学版), 2014, 44(3): 57-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!