您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 14-19.doi: 10.6040/j.issn.1672-3961.0.2017.027

• 土木工程——隧道与地下工程专题 • 上一篇    下一篇

近断层速度脉冲对隧洞工程动力响应的影响规律

白现军1,王太兴1,卫鑫1,赵武胜2   

  1. 1. 中国葛洲坝集团第三工程有限公司, 陕西 西安 710000;2. 中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室, 湖北 武汉 430071
  • 收稿日期:2017-01-16 出版日期:2017-04-20 发布日期:2017-01-16
  • 作者简介:白现军(1969— ),男,重庆人,高级工程师,主要研究方向为水利水电工程和地下工程施工技术. E-mail: 643138994@qq.com

Effect of the velocity pulse on the seismic response of the tunnel

BAI Xianjun1, WANG Taixing1, WEI Xin1, ZHAO Wusheng2   

  1. 1. No.3 Engineering Co., Ltd., China Gezhouba Group, Xi'an 710000, Shaanxi, China;
    2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
  • Received:2017-01-16 Online:2017-04-20 Published:2017-01-16

摘要: 基于近断层速度脉冲与相位差谱的统计规律,提出一种脉冲型地震动人工合成方法,该方法能够确保合成地震波时域与频域的非平稳性。在此基础上,依托巴基斯坦N-J水电站,采用数值仿真方法研究方向性效应速度脉冲对引水隧洞的影响。结果表明:低频速度脉冲更接近围岩的自振频率,能够显著提高衬砌的内力,具有较强的破坏性。在近断层隧洞等地下工程的抗震设计中需要考虑断层的速度脉冲分量。

关键词: 断层, 地震响应, 速度脉冲, 隧洞

Abstract: Based on the statistical characteristics of the velocity pulse near the fault and the phase difference, a synthetic method of pulse-like ground motion was proposed. This method could ensure that the synthetic record was non-stationary both in time domain and frequency domain. Based on the N-J hydropower station in Pakistan, the effect of the velocity pulse on the seismic responses of the tunnel were studied by numerical simulation. The results showed that the seismic response of the tunnel was significantly influenced by the velocity pulse. When considering the velocity pulse, the internal forces in tunnel liner increased remarkably, and the damage to the tunnel liner became more serious. The velocity pulse should be considered in anti-seismic design for the tunnels near the faults.

Key words: velocity pulse, tunnel, seismic response, fault

中图分类号: 

  • TU43
[1] HUO H, BOBET A, FERNÁNDEZ G, et al. Load transfer mechanism between underground structure and surrounding ground: evaluation of the failure of the Daikai station[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12):1522-1533.
[2] KONTOE S K, ZDRAVKOVIC L Z, POTTS DM P M, et al. Case study on seismic tunnel response[J]. Canadian Geotechnical Journal, 2007, 45(12):1743-1764.
[3] 陈正勋,王泰典,黄灿辉. 山岭隧道受震损害类型与原因之案例研究[J]. 岩石力学与工程学报, 2011, 30(1):45-57. CHEN Chenghsun, WANG Taitien, HUANG Tsanhwei. Case study of earthquake-induced damage patterns of rock tunnel and associated reason[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1):45-57.
[4] LI T. Damage to mountain tunnels related to the Wenchuan earthquakeand some suggestions for aseismic tunnel construction[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(2):297-308.
[5] TAHGHIGHI H. Earthquake fault-induced surface rupture—a hybrid strong ground motion simulation technique and discussion for structural design[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(14):1591-1608.
[6] MUKHOPADHYAY S, GUPTA V K. Directivity pulses in near-fault ground motions—II: estimation of pulse parameters[J]. Soil Dynamics & Earthquake Engineering, 2013, 50(7):38-52.
[7] 李明, 谢礼立, 翟长海. 近断层脉冲型地震动重要参数的识别方法[J]. 世界地震工程, 2009, 25(4):1-6. LI Ming, XIE Lili, ZHAI Changhai. Identification methods of important parameters for nearfault pulse type ground motions[J]. World Earthquake Engineering, 2009, 25(4):1-6.
[8] MUKHOPADHYAY S, GUPTA V K. Directivity pulses in near-fault ground motions—I: identification, extraction and modeling[J]. Soil Dynamics & Earthquake Engineering, 2013, 50(6):1-15.
[9] RODRIGUEZ-MAREK A, BRAY J D. Seismic site response for near-fault forward directivity ground motions[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2006, 132(12):1611-1620.
[10] YAGHMAEI-SABEGH S, TSANG H H. An updated study on near-fault ground motions of the 1978 Tabas, Iran, earthquake(w=7.4)[J]. Scientia Iranica, 2011, 18(4):895-905.
[11] WANG G Q, ZHOU X Y, ZHANG P Z, et al. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan Earthquake[J]. Soil Dynamics & Earthquake Engineering, 2002, 22(1):73-96.
[12] VAEZ S R H, SHARBATDAR M K, AMIRI G G, et al. Dominant pulse simulation of near fault ground motions[J]. Earthquake Engineering and Engineering Vibration, 2013, 12(2):267-278.
[13] 田玉基, 杨庆山, 卢明奇. 近断层脉冲型地震动的模拟方法[J]. 地震学报, 2007, 29(1):77-84. TIAN Yuji, YANG Qingshan, LU Mingqi. Simulation method of near-fault pulse-type ground motion[J]. Actaseismologicasinica, 2007, 29(1):77-84.
[14] SOKOLOV V, LOH C, WEN K. Empirical model for estimating Fourier amplitude spectra of ground acceleration in Taiwan region[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(3):339-357.
[15] KALKAN E, KUNNATH S K. Effects of fling step and forward directivity on seismic response of buildings[J]. Earthquake Spectra, 2006, 22(2):367-390.
[16] YOUSEFI M, TAGHIKHANY T. Incorporation of directivity effect in probabilistic seismic hazard analysis and disaggregation of Tabriz city[J]. Natural Hazards, 2014, 73(2):277-301.
[17] SEHHATI R, RODRIGUEZ-MAREK A, ELGAWADYl M, et al. Effects of near-fault ground motions and equivalent pulses on multi-story structures[J]. Engineering Structures, 2011, 33(3):767-779.
[18] GHAHARI S F, JAHANKHAH H, GHANNAD M A. Study on elastic response of structures to near-fault ground motions through record decomposition[J]. Soil Dynamics & Earthquake Engineering, 2010, 30(7):536-546.
[19] MAVROEIDIS G P. A mathematical representation of near-fault ground motions[J]. Bulletin of the Seismological Society of America, 2003, 93(3):1099-1131.
[20] THRÁINSSON H, KIREMIDJIAN A S. Simulation of digital earthquake accelerograms using the inverse discrete Fourier transform[J]. Earthquake Engineering & Structural Dynamics, 2010, 31(12):2023-2048.
[21] HILLERBORG A, MODEER M, PETERSSON P E.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement & Concrete Research, 2008, 6(6):773-781.
[22] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
[23] LUBLINER J, OLIVER J, OLLER S, et al. A Plastic-damage model for concrete[J]. International Journal of Solids & Structures, 1989, 25(3): 299-326.
[24] 赵武胜,陈卫忠,郑朋强,等. 地下工程数值计算中地震动输入方法选择及实现[J]. 岩石力学与工程学报,2013,32(8):1579-1587. ZHAO Wusheng, CHEN Weizhong, ZHENG Pengqiang, et al. Choice and implementation of seismic wave input method in numerical calculation for underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8):1579-1587.
[1] 周乾,闫维明,纪金豹. 故宫灵沼轩钢结构动力特性与地震响应[J]. 山东大学学报(工学版), 2016, 46(1): 70-79.
[2] 郭信山, 施龙青. 基于断层影响因子与断层分维特征的断层突水危险性定量化分析[J]. 山东大学学报(工学版), 2014, 44(5): 58-64.
[3] 张永习. 可拓综合评判在某水工隧洞岩爆等级评价中的应用[J]. 山东大学学报(工学版), 2012, 42(2): 58-63.
[4] 李志鹏,张庆松*,李术才,薛翊国,苏茂鑫,丁志海,张伟杰. 瞬变电磁预报方法在胶州湾海底隧道穿越F1-2含水断层中的应用[J]. 山东大学学报(工学版), 2011, 41(1): 101-104.
[5] 赵继增. 青岛胶州湾海底隧道涌水断层全断面帷幕注浆技术研究[J]. 山东大学学报(工学版), 2009, 39(6): 116-120.
[6] 赵岩 李术才 薛翊国 李为腾 丁志海. TSP203预报胶州湾海底隧道f2-1含水断层的实践[J]. 山东大学学报(工学版), 2009, 39(4): 40-44.
[7] 李为腾 李术才 薛翊国 赵岩 丁志海. 地质雷达在胶州湾海底隧道F4-5含水断层超前预报中的应用[J]. 山东大学学报(工学版), 2009, 39(4): 65-68.
[8] 薛翊国,李术才,赵岩,苏茂鑫,李为腾,丁志海. 青岛胶州湾海底隧道F44含水断层注浆前后TSP探测分析[J]. 山东大学学报(工学版), 2009, 39(2): 108-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!