山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 42-47.doi: 10.6040/j.issn.1672-3961.1.2016.150
张玉玲,尹传环*
ZHANG Yuling, YIN Chuanhuan*
摘要: 为了有效检测恶意软件,减少恶意软件对安卓平台的安全造成的威胁,在对现有数据集分析研究的基础上,提出概率统计和特征抽取两种策略,分别用这两种策略对提取的特征进行降维处理,减少不确定性数据,再用线性支持向量机(support vector Machine, SVM)分类,模型训练时间缩短为原来的16.7%,并且检测未知恶意软件的准确率明显提高。将该降维策略在其他常用算法上进行试验,结果表明改进后的数据有助于提高这些算法的分类准确率。
中图分类号:
[1] STRATEGY Analytics. Android captures record 88 percent share of globalsmartphone shipments in Q3 2016[EB/OL]. [2016-11-17]. https://www.strategyanalytics.com/strategy-analytics. [2] MOBILE Security. 2014 Mobile Threat Report[EB/OL]. [2016-11-17]. https://www.lookout.com/resources/reports/mobile-threat-report. [3] LI Jun. 360发布手机安全报告恶意程序去年增4倍[J]. 计算机与网络, 2015, 41(3):89-89. LIU J. 360 delivered Mobile Security Report: Malicious programs increased four times last year[J].Computer & Network, 2015, 41(3):89-89. [4] 丰生强. Android 软件安全与逆向分析[M]. 北京:人民邮电出版社, 2013. [5] BURGUERA I, ZURUTUZA U, NADJM-TEHRANI S. Crowdroid: behavior-based malware detection system for Android[C] //ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. Chicago, Illinois, USA: ACM, 2011: 15-26. [6] TAM K, KHAN S J, FATTORI A, et al. CopperDroid: Automatic reconstruction of Android malware behaviors[C] //Proceedings of the Symposium on Network and Distributed System Security. San Diego, CA, USA: NDSS, 2015. [7] ENCK W, GILBERT P, HAN S, et al. TaintDroid: An information-flow tracking system for realtime privacy monitoring on smart phones[J]. ACM Transactions on Computer Systems, 2014, 32(2):393-407. [8] ENCK W, ONGTANG M, MCDANIEL P. On lightweight mobile phone application certification[C] //Proceedings of the 16th ACM Conference on Computer and Communications Security. New York, USA: ACM, 2009: 235-245. [9] FELT A P, CHIN E, HANNA S, et al. Android permissions demystified[C] //Proceedings of the 18th ACM Conference on Computer and Communications Security. New York, USA: ACM, 2011: 627-638. [10] GRACE M, ZHOU Y, ZHANG Q, et al. RiskRanker: scalable and accurate zero-day Android malware detection[C] //Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services. New York, USA: ACM, 2012: 281-294. [11] YUAN Z, LU Y, WANG Z, et al. Droid-Sec: deep learning in android malware detection[C] //Proceedings of the 2014 ACM conference on SIGCOMM. New York, USA: ACM, 2014: 371-372. [12] SHEEN S A, NITHA R, NATARAJAN V. Android based malware detection using a multifeature collaborative decision fusion approach[J]. Neurocomputing, 2015, 151:905-912. [13] ARP D, PREITZENBARTH M S, HÜBNER M, et al. Drebin: effective and explainable detection of android malware in your pocket[C] //Proceedings of the Annual Symposium on Network and Distributed System Security. San Diego, CA, USA: NDSS, 2014. [14] ZHOU Y, JIANG X. Dissecting Android malware: characterization and evolution[C] //IEEE Symposium on Security & Privacy. San Francisco, CA, USA: IEEE, 2012: 95-109. [15] CORMEN T H. Introductionto Algorithms[M]. Massachusetts: MIT Press, 2009. [16] BLOOM B H. Space/time tradeoffs in hash coding with allowable errors[J]. Communication of the ACM, 1970, 13(7):422-426. [17] FAN R E, CHANG K W, HSIEH C J, et al. LIBLINEAR: A library for large linear classification[J]. Journal of Machine Learning research(JMLR), 2008, 9:1871-1874. [18] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297. [19] 吴倩,赵晨啸,郭莹.Android安全机制解析与应用实践[M].北京:机械工业出版社,2013. [20] AVDIIENKO V, KUZNETSOV K, GORLA A, et al. Mining apps for abnormal usage of sensitive data[C] //2015 IEEE/ACM 37th IEEE International Conference on Software Engineering. Florence, Italy: IEEE, 2015,1: 426-436. [21] CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-27. |
[1] | 钱文光,李会民. 一种相似子空间嵌入算法[J]. 山东大学学报(工学版), 2018, 48(1): 8-14. |
[2] | 刘晓明,牛新生,张怡,曹本庆,施啸寒,张友泉,张杰,安鹏,汪湲. 基于NASA观测数据的风电出力时空分布及波动特性分析[J]. 山东大学学报(工学版), 2016, 46(4): 111-116. |
[3] | 梅清琳,张化祥. 基于全局距离和类别信息的邻域保持嵌入算法[J]. 山东大学学报(工学版), 2016, 46(1): 10-14. |
[4] | 周哲, 商琳. 一种基于动态词典和三支决策的情感分析方法[J]. 山东大学学报(工学版), 2015, 45(1): 19-23. |
[5] | 文志强,朱文球,胡永祥. 半调图像的分类方法[J]. 山东大学学报(工学版), 2013, 43(4): 7-12. |
[6] | 李富贵1,2,黄添强1,2*,苏立超1,2,苏伟峰3. 融合多特征的异源视频复制-粘贴篡改检测[J]. 山东大学学报(工学版), 2013, 43(4): 32-38. |
[7] | 严云洋1,2,唐岩岩2,刘以安2,张天翼3. 使用多尺度LBP特征和SVM的火焰识别算法[J]. 山东大学学报(工学版), 2012, 42(5): 47-52. |
[8] | 张永军1,刘金岭2,于长辉3. 基于词贡献度的垃圾短信分类方法[J]. 山东大学学报(工学版), 2012, 42(5): 87-90. |
[9] | 王熙照,白丽杰*,花强,刘玉超. null[J]. 山东大学学报(工学版), 2011, 41(4): 1-6. |
[10] | 崔燕,范丽亚. 高维数据正定核与不定核的KPCA变换阵比较[J]. 山东大学学报(工学版), 2011, 41(1): 17-23. |
[11] | 贺广南,杨育彬*. 基于流形学习的图像检索算法研究[J]. 山东大学学报(工学版), 2010, 40(5): 129-136. |
[12] | 戴平,李宁*. 一种基于SVM的快速特征选择方法[J]. 山东大学学报(工学版), 2010, 40(5): 60-65. |
[13] | 曾雪强1,李国正2. 基于偏最小二乘降维的分类模型比较[J]. 山东大学学报(工学版), 2010, 40(5): 41-47. |
[14] | 梁塽,许洁萍*,李欣. 歌词与内容相结合的流行音乐结构分析[J]. 山东大学学报(工学版), 2010, 40(5): 77-81. |
[15] | 张道强. 知识保持的嵌入方法[J]. 山东大学学报(工学版), 2010, 40(2): 1-10. |
|