您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (1): 41-44.doi: 10.6040/j.issn.1672-3961.1.2013.256

• 机器学习与数据挖掘 • 上一篇    下一篇

基于有序决策树的改进归纳算法

潘盼1,王熙照2,翟俊海2   

  1. 1.河北大学数学与计算机学院, 河北 保定 071002;
    2.河北省机器学习与计算智能重点实验室, 河北 保定 071002
  • 收稿日期:2013-04-30 出版日期:2014-02-20 发布日期:2013-04-30
  • 作者简介:潘盼(1986- ), 女,河北石家庄人,硕士研究生, 主要研究方向为机器学习.E-mail:0311961001@163.com
  • 基金资助:

    国家自然科学基金资助项目(61170040); 河北省自然科学基金资助项目(F2013201110, F2013201220); 河北大学自然科学基金资助项目(2011228043)

An improved induction algorithm based on ordinal decision tree

PAN Pan1, WANG Xi-zhao2, ZHAI Jun-hai2   

  1. 1. College of Mathematics and Computer Science, Hebei University, Baoding 071002,  China;
    2. Key Lab of Machine Learning and Computational Intelligence of Hebei Province, Baoding 071002, China
  • Received:2013-04-30 Online:2014-02-20 Published:2013-04-30

摘要:

基于构建有序决策树,提出了一种新的归纳算法。该算法选择的扩展属性不仅和类的有序互信息值最大,而且要求和同一分支上已被用过的条件属性的有序互信息值最小。实验结果表明,考虑了条件属性之间的相关性后,可避免同一条件属性的重复选择,真正体现了条件属性和决策属性之间的有序互信息,与已有的算法相比,提高了测试精度。

关键词: 属性相关, 有序分类, 有序信息熵, 决策树, 有序互信息

Abstract:

An improved ordinal decision tree algorithm was proposed. The extended attributes selected with the proposed algorithm maximized the ranking mutual information between the candidate attributes and the decision attribute, and also minimized the ranking mutual information between the candidate attributes and the selected conditional attributes on the same branch. The experimental results showed that  the correlation to be taken account among the conditional attributes could  avoid to  selecte  the same one, and the ideas of the proposed method could really reflect the nature of the ranking mutual information. The proposed algorithm could improve the test accuracy compared with the existing algorithms.

Key words: ranking mutual information, ordinal classification, ranking entropy, correlation of attribute, decision tree

[1] 熊冰妍, 王国胤, 邓维斌. 分级式代价敏感决策树及其在手机换机预测中的应用[J]. 山东大学学报(工学版), 2015, 45(5): 36-42.
[2] 许春耀1,2, 陈明志3*, 余轮1. 适应用户需求变化的前摄推荐模型[J]. 山东大学学报(工学版), 2013, 43(3): 1-6.
[3] 张小峰,张志旺,逄珊. 基于通信系统的决策树构造算法[J]. 山东大学学报(工学版), 2011, 41(4): 79-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!