山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (3): 1-6.doi: 10.6040/j.issn.1672-3961.2.2015.044
• • 下一篇
乔小燕
QIAO Xiaoyan
摘要: 利用藻种细胞生物形态差异进行图像分析是浮游生物显微图像识别的一种有效方法,但存在藻种库单一、局部生理特征难以形式化描述等难题。为了克服以上难题,将赤潮藻显微图像识别分解为精确分割、特征提取、特征降维和分类诊断四个渐进识别过程。采用多方向投影积分的方法定位分割出细胞目标,进一步对顶刺和横沟细节区域实现了精细分割;将藻种生理特征与机器识别特征一一对应,依次对形状、不变矩、纹理和局部形态两级特征进行了有效地特征提取和描述;采用支持向量机多类别分类模型进行分类识别。研究结果表明,该方法能准确分割目标,可对不同角度拍摄的15类藻种细胞显微图像完成快速分类。
中图分类号:
[1] 张青田.中国海域赤潮发生趋势的年际变化[J]. 中国环境监测, 2013, 29(5):98-102. ZHANG Qingtian. Review on the annual variation of red tides in china sea[J]. Environmental Monitoring in China, 2013, 29(5):98-102. [2] 徐海龙, 谷德贤, 张文亮, 等. 基于时间序列的海洋赤潮灾害特征分析[J]. 海洋通报, 2014,33(4):469-474. XU Hailong, GU Dexian, ZHANG Wenliang, et al. Analysis of the red tide features based on time series in the China Sea[J]. Marine Science Bulletin, 2014, 33(4):469-474. [3] 林风翱, 卢兴旺, 洛昊, 等. 渤海赤潮的历史、现状及其特点[J]. 海洋环境科学, 2008,27(增2):1-5. LIN Fengao, LU Xingwang, LUO Hao, et al. History, status and characteristics of red tide in Bohai Sea[J]. Marine Environmental Science, 2008, 27(supplement 2):1-5. [4] 洛昊, 马明辉,梁斌, 等. 中国近海赤潮基本特征与减灾对策[J]. 海洋通报, 2013,32(5):595-600. LUO Hao, MA Minghui, LIANG Bin, et al. Basic characteristics and mitigation countermeasures of red tides in China seas[J]. Marine Science Bulletin, 2013, 32(5):595-600. [5] JEFFREY S Erickson, NASTARAN Hashemi, JAMES M Sullivan, et al. In situ phytoplankton analysis:there's plenty of room at the bottom[J]. Analytical Chemistry, 2012, 84(2):839-850. [6] CABELL S Davis, FREDRIK T Thwaites, SCOTT M Gallager, et al. A three-axis fast-tow digital video plankton recorder for rapid surveys of plankton taxa and hydrography[J]. Limnology and Oceanography:Methods, 2005, 3:59-74. [7] HANS Henrik Jakobsen, JACOB Carstensen. FlowCAM:sizing cells and understanding the impact of size distributions on biovolume of planktonic community structure[J]. Aquatic Microbial Ecology, 2011, 65:75-87. [8] 刘昕, 张俊彬, 黄良民. 流式细胞仪在海洋生物学研究中的应用[J]. 海洋科学, 2007, 31(1):92-96. LIU Xin, ZHANG Junbin, HUANG Liangmin. Applications of flow cytometry(FCM)in researches of marine biology[J]. Marine Sciences, 2007, 31(1):92-96. [9] Lunven Michel, Lehaitre Michel, Nascimben Eric, et al. A new device for in situ video and fluorescence analysis of marine particles. Applications to phytoplankton studies[J]. Optical Complex Systems, 2013, 24(27):477-478. [10] 于志刚, 米铁柱, 姚鹏,等. 赤潮藻鉴定与定量检测方法进展[J]. 中国海洋大学学报(自然科学版), 2009, 39(5):1067-1076. YU Zhigang, MI Tiezhu, YAO Peng, et al. Advances in identification and quantification of harmful algae[J]. Periodical of Ocean University of China(Natural Science Edition), 2009, 39(5):1067-1076. [11] SCHOLIN C A, MARIN R, MILLER P E, et al. Application of DNA probes and a receptor-binding assay for detection of pseudo-nitzschia(bacillariophyceae)species and domoic acid activity in cultured and natural samples[J]. Journal of Phycology, 1999, 35:1356-1367. [12] 汪世华, 张峰, 袁军,等. 生物毒素检测技术新进展[J]. 应用与环境生物学报, 2008, 14(5):726-731. WANG Shihua, ZHANG Feng, YUAN Jun, et al. Progress of detection technologies for biotoxins[J]. Chinese Journal of Applied and Environmental Biology, 2008, 14(5):726-731. [13] LAWRENCE J F, MENARD C. Determination of marine toxins by liquid chromatography[J]. Fresenius Journal of Analytical Chemistry, 1991, 339:494-498. [14] QUILLIAM M A, XIE M, HARDSTAFF W R. Rapid extraction and cleanup for liquid chromatographic determinations of domoic acid in unsalted seafood[J]. Journal of AOAC International, 1995, 78:543-554 [15] JAMES K J, GILLMAN M, LEHANCE M, et al. New fluorimetric method of liquid chromatography for the determination of the neurotoxin domoic acid in seafood and marine phytoplankton[J]. Journal of Chromatography A, 2000, 871(1-2):1-6. [16] 李鸿宇,张前前,王修林,等. 海洋浮游三维荧光光谱的逐层分类方法研究[J].中国海洋大学学报(自然科学版),2012,42(Z2):117-125. LI Hongyu, ZHANG Qianqian, WANG Xiulin, et al. Tiered classification approach for three-dimentional fluorescent fingerprints of marine phytoplankton[J]. Periodical of Ocean University of China(Natural Science Edition), 2012, 42(Z2):117-125. [17] 陈纪新, 黄邦欣, 柳欣. 海洋浮游生物原位观测技术研究进展[J]. 地球科学进展, 2013,28(5):572-576. CHEN Jixin, HUANG Bangxin, LIU Xin. The progress of in situ observation of marine plankton[J]. Advances In Earth Science, 2013, 28(5):572-576. [18] TANG X, LIN F, ANDREW R. Binary plankton image classification[J]. IEEE Journal of Oceanic Engineering, 2006, 31(3):728-735. [19] 乔小燕. 基于自适应形态学的甲藻显微图像顶刺提取[J]. 中国海洋大学学报(自然科学版), 2013, 43(4):117-122. QIAO Xiaoyan. A method for spine segmentation and feature extraction of pyrrophyta microscopic image[J].Periodical of Ocean University of China(Natural Science Edition), 2012, 43(4):117-122. [20] 乔小燕. 基于特征灰度和分水岭变换的甲藻横沟区域分割[J]. 计算机科学,2012, 39(6A):555-558. QIAO Xiaoyan. Pyrrophyta spine extraction based on adaptive morphology[J]. Computer Science, 2012, 39(6A):555-558. [21] HU M K. Visual pattern recognition by moment invariants[J]. IRE Transaction Information Theory, 1962, 8(2):179-187. [22] 高程程, 惠晓威. 基于灰度共生矩阵的纹理特征提取[J].计算机系统应用, 2010, 19(6):195-198. GAO Chengcheng, HUI Xiaowei. GLCM-based texture feature extraction[J]. Computer System and Applications, 2010, 19(6):195-198. [23] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2001, 40(1):2-10. DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2001, 40(1):2-10. [24] CRISTININI N, TAYLOR J S.支持向量机导论[M]. 李国正,王猛,曾华军,译. 北京:电子工业出版社,2004. CRISTININI N, TAYLOR J S. An introduction to support vector maines and other kernel-based learning methods[M]. LI Guozheng, WANG Meng, Zeng Huajun, trans. Beijing:Publishing House of Electronics Industry, 2004. [25] VAPNIK V N. Statistical learning theory[M]. New York:Wiley-Interscience, 1998. [26] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报,2000,26(1):32-41. ZHANG Xuegong. Statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1):32-41. [27] BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C] //Proceedings of the Fifth Annual Workshop on Computational Learning Theory. New York:ACM Press, 1992:144-152. |
[1] | 熊冰妍, 王国胤, 邓维斌. 分级式代价敏感决策树及其在手机换机预测中的应用[J]. 山东大学学报(工学版), 0, (): 36-42. |
[2] | 王晓初, 王士同, 包芳. 基于概率密度分布一致约束的最小最大概率机图像分类算法[J]. 山东大学学报(工学版), 0, (): 13-21. |
[3] | 沈冬冬,周风余,栗梦媛,王淑倩,郭仁和. 基于集成深度神经网络的室内无线定位[J]. 山东大学学报 (工学版), 2018, 48(5): 95-102. |
[4] | 胡建平,李鑫,谢琪,李玲,张道畅. 基于Delaunay三角化的二维无约束优化EMD方法[J]. 山东大学学报 (工学版), 2018, 48(5): 9-15, 37. |
[5] | 吴晨谋,方志军,黄正能. 基于单目摄像头的主动式驾驶行为分析算法[J]. 山东大学学报 (工学版), 2018, 48(5): 69-76. |
[6] | 王国新,陈凤东,刘国栋. 基于彩色伪随机编码结构光特征提取方法[J]. 山东大学学报 (工学版), 2018, 48(5): 55-60. |
[7] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54. |
[8] | 李广丽,刘斌,朱涛,殷依,张红斌. 基于优选典型相关分量的跨媒体检索模型[J]. 山东大学学报 (工学版), 2018, 48(5): 38-46. |
[9] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报 (工学版), 2018, 48(5): 32-37. |
[10] | 陈海永,余力,刘辉,杨佳博,胡启迪. 基于经验小波的太阳能电池缺陷图像融合[J]. 山东大学学报 (工学版), 2018, 48(5): 24-31. |
[11] | 张东波,寇涛,许海霞. 基于LDB描述子和局部空间结构匹配的快速场景辨识[J]. 山东大学学报 (工学版), 2018, 48(5): 16-23. |
[12] | 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20-26. |
[13] | 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法[J]. 山东大学学报(工学版), 2018, 48(4): 10-19. |
[14] | 江珊珊,杨静,范丽亚. 基于PDEs的图像特征提取方法[J]. 山东大学学报(工学版), 2018, 48(4): 27-36. |
[15] | 窦婷婷,姚元玺,陈鹏,芦灯. 基于ATP-EMTP的电弧建模及工程仿真[J]. 山东大学学报(工学版), 2018, 48(4): 102-108. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 527
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1354
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|