您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版)

• 论文 • 上一篇    下一篇

基于无理函数插值的多边形有限元方法

李术才1, 王兆清2, 李树忱1   

  1. 1. 山东大学岩土和结构工程研究中心, 山东 济南 250061;2. 山东建筑大学工程力学研究所, 山东 济南 250101
  • 收稿日期:2006-11-16 修回日期:1900-01-01 出版日期:2008-04-16 发布日期:2008-04-16
  • 通讯作者: 王兆清

A polygonal finite element method based on irrational function interpolation

LI Shu-cai1, WANG Zhao-qing2, LI Shu-chen1   

  1. 1. Research Center of Geotechnics and Structure Engineering, Shandong University, Jinan 250061, China; 2. Institute of Engineering Mechanics, Shandong Jianzhu University
  • Received:2006-11-16 Revised:1900-01-01 Online:2008-04-16 Published:2008-04-16
  • Contact: WANG Zhao-qing

摘要: 本文采用多边形单元的平均值坐标,构造任意节点分布的多边形单元无理函数形式的插值函数,提出了一种求解微分方程边值问题的多边形有限元方法. 对于曲线边界问题的数值求解,通过适当的节点配置,多边形单元网格能够逼近任意形状的求解区域. 不同形状多边形单元的形函数表达式形式统一,方便计算程序的编写. 数值算例验证了多边形有限元法的求解精度和有效性.

关键词: 无理函数插值, 多边形单元, 多边形有限元, 重心坐标, 平均值坐标

Abstract: The irrational function forms interpolation on a polygonal element with arbitrary nodal distribution was constructed by using mean value coordinates of polygonal elements. The polygonal finite element method for solving boundary value problems of differential equations was presented. For a curved boundary, the polygonal meshes can exactly approximate the arbitrary geometric shape by proper nodal distribution. The expressions of shape function within different elements are uniform. It is convenient to program the computer codes for finite element analysis. Numerical examples on second order elliptical boundary value problems are presented to demonstrate the accuracy and effectiveness of the proposed method.

Key words: irrational function interpolation, polygonal element, polygonal finite element method, barycentric coordinates, mean value coordinates

中图分类号: 

  • O242.21
[1] 王建明,裴信超,樊现行,刘伟,曹雁超. SPH耦合FEM模拟弹丸撞击对表面形貌的影响[J]. 山东大学学报(工学版), 2013, 43(5): 87-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!