您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (5): 59-64.

• 机器学习与数据挖掘 • 上一篇    下一篇

基于局部自我相关函数光线照明变化下的人脸检测

朱洪锦1,范洪辉1,陈兴瑞1,田村安孝2   

  1. 1.江苏技术师范学院计算机工程学院, 江苏 常州 213001; 2.日本山形大学大学院理工学研究科, 山形 米泽 9928510
  • 收稿日期:2012-05-10 出版日期:2012-10-20 发布日期:2012-05-10
  • 作者简介:朱洪锦(1981- ),女,吉林柳河人,讲师,主要研究方向为数字图像处理,模式识别,人脸检测等. E-mail: zhuhongjin@jstu.edu.cn
  • 基金资助:
    江苏技术师范学院科研启动基金资助项目(KYY11048,KYY11049)

Image normalization based on local autocorrelation and its application to face detection

ZHU Hong-jin1, FAN Hong-hui1, CHEN Xing-rui1, TAMURA-Yasutaka2   

  1. 1.College of Computer Engineering, Jiangsu Teachers University of Technology, Changzhou 213001, China; 2.Graduate School of Science and Engineering, Yamagata University, Yonezawashi Yamagata 9928510, Japan
  • Received:2012-05-10 Online:2012-10-20 Published:2012-05-10

摘要: 针对照明变化条件下人脸图像检测精度相对较低的问题,以照明变化下的人脸检测为研究对象,提出局部自我相关函数(local autocorrelation, LAC),研究基于Adaboost算法下采用局部自我相关函数为前处理的光照变化下人脸检测。提出了局部自我相关函数定义模型,对局部自我相关函数的物理特性进行分析,从理论上验证局部自我相关函数对线性照明变化的鲁棒性。采用卡内基梅隆大学的人脸照明变化数据库(CMU PIE Database)作为检测数据验证基于局部自我相关函数的光线照明变化下的人脸检测,实验结果证明了局部自我相关函数消除照明变化对人脸检测精度影响的有效性。

关键词: 局部自我相关函数, 照明变化, 图像预处理, 人脸检测, Adaboost算法

Abstract: Nonuniformity of luminance in images due to irregular lighting etc. could cause difficulties in various kinds of image processing in face detection. A normalization method was presented for recognizing human faces under variation in lighting, which was called local autocorrelation (LAC) method. LAC method was applied to human face detection based on Adaboost algorithm. The classification result of CMU PIE database for original and LAC images were compared with the LAC method. The physical properties of the LAC were analyzed, and the LAC robustness of linear changes in illumination was verified theoretically. Experimental results showed the number of weak classifiers could be reduced to a great extent, while preserving equal detection capability. The effectiveness of elimination of nonuniform illumination variation in images was verified in face detection experiment.

Key words: local autocorrelation, illumination variation, image preprocessing, face detection, Adaboost algorithm

中图分类号: 

  • TP391.4
[1] 江伟坚1,2,郭躬德1,2*,赖智铭1,2. 基于新Haar-like特征的Adaboost人脸检测算法[J]. 山东大学学报(工学版), 2014, 44(2): 43-48.
[2] 李翔1,朱全银1,王尊2. 基于可变基函数和GentleAdaBoost的小波神经网络研究[J]. 山东大学学报(工学版), 2013, 43(5): 31-38.
[3] 孙晓燕1,2,张化祥1,2*,计华1,2. 基于AdaBoost的欠抽样集成学习算法[J]. 山东大学学报(工学版), 2011, 41(4): 91-94.
[4] 韦玉科1, 李江平2, 段仰广1, 卢博生1. 一种基于图像处理的舌象采集自动调焦算法[J]. 山东大学学报(工学版), 2011, 41(4): 95-100.
[5] 孙亚新, 战荫伟*. 基于肤色模型与人脸特征的多姿态人脸检测[J]. 山东大学学报(工学版), 2011, 41(2): 36-39.
[6] 陈金坦1,2,康恒政3*,杨燕3,周伟雄4. 一种用于不平衡数据的分类算法[J]. 山东大学学报(工学版), 2011, 41(2): 96-101.
[7] 马志强,常发亮,田伟,赵瑶 . 彩色图像中的人脸检测方法[J]. 山东大学学报(工学版), 2007, 37(4): 19-22 .
[8] 牛新生,叶华,王亮 . 彩色图像中的人脸检测方法[J]. 山东大学学报(工学版), 2007, 37(4): 0-0 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!