山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (3): 1-5.
• 机器学习与数据挖掘 • 下一篇
谢伙生,刘敏
XIE Huo-sheng, LIU Min
摘要:
为了更好地发挥主动学习、半监督学习和集成学习这3种机器学习方法的优势,研究了1个不需要2个充分冗余视图、泛化能力强的高效学习算法。从聚类假设出发,给出每轮协同训练过程中添加自动标记样本的置信度度量方法,降低误标记率;提出作为主动选择未标记样本依据的贡献度的概念,贡献度越高的样本,越具有人工标记的价值,在协同训练迭代结束后,选择贡献度高的样本标记,就能增强反馈的效果,提升学习性能,提出一种基于主动学习的集成协同训练算法。应用于图像检索的实验结果表明,提出的算法是高效可行的。
[1] | 沈冬冬,周风余,栗梦媛,王淑倩,郭仁和. 基于集成深度神经网络的室内无线定位[J]. 山东大学学报(工学版), 2018, 48(5): 95-102. |
[2] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5): 47-54. |
[3] | 王立宏,李强. 旅行商问题的一种选择性集成求解方法[J]. 山东大学学报(工学版), 2016, 46(1): 42-48. |
[4] | 陈大伟,闫昭*,刘昊岩. SVD系列算法在评分预测中的过拟合现象[J]. 山东大学学报(工学版), 2014, 44(3): 15-21. |
[5] | 孔超1,2,张化祥1,2*,刘丽1,2. 基于兴趣区域特征融合的半监督图像检索算法[J]. 山东大学学报(工学版), 2014, 44(3): 22-28. |
[6] | 李雅林1,2,张化祥1,2*,冯新营1,2. 一种新的基于半监督的多标记学习算法[J]. 山东大学学报(工学版), 2013, 43(2): 18-22. |
[7] | 房晓南1,2,张化祥1,2*,高爽1,2. 基于SMOTE和随机森林的Web spam检测[J]. 山东大学学报(工学版), 2013, 43(1): 22-27. |
[8] | 夏战国,万玲,蔡世玉,孙鹏辉. 一种面向入侵检测的半监督聚类算法[J]. 山东大学学报(工学版), 2012, 42(6): 1-7. |
[9] | 张伶卫,万文强. 基于云计算平台的代价敏感集成学习算法研究[J]. 山东大学学报(工学版), 2012, 42(4): 19-23. |
[10] | 李小斌1, 李世银2. 时间序列早期分类的多分类器集成方法[J]. 山东大学学报(工学版), 2011, 41(4): 73-78. |
[11] | 李霞1,王连喜2,蒋盛益1. 面向不平衡问题的集成特征选择[J]. 山东大学学报(工学版), 2011, 41(3): 7-11. |
[12] | 魏巍,张艳宁. 基于半监督隐含狄利克雷分配的人脸姿态判别方法[J]. 山东大学学报(工学版), 2011, 41(3): 17-22. |
[13] | 蔡念, 张国宏, 楼朋旭, 戴青云. 基于形状和纹理的外观设计专利图像检索方法[J]. 山东大学学报(工学版), 2011, 41(2): 1-4. |
[14] | 贺广南,杨育彬*. 基于流形学习的图像检索算法研究[J]. 山东大学学报(工学版), 2010, 40(5): 129-136. |
[15] | 宿洪禄,李凡长*. 基于相异性和不变特征的半监督图像检索[J]. 山东大学学报(工学版), 2010, 40(5): 150-153. |
|