您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (4): 13-19.

• 论文 • 上一篇    下一篇

基于双向运动矢量的数字视频篡改鉴定

黄添强1,2,陈智文1   

  1. 1. 福建师范大学数学与计算机科学学院, 福建 福州 350007;
    2. 福建师范大学网络安全与密码技术福建省高校重点实验室, 福建 福州 350007
  • 收稿日期:2011-04-15 出版日期:2011-08-16 发布日期:2011-04-15
  • 作者简介:黄添强(1971- ),男,福建莆田人,副教授,博士,主要研究方向为机器学习与数据挖掘.E-mail: fjhtq@fjnu.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(61070062);福建省自然科学基金资助项目(2008J04004);福建省高校服务海西建设重点项目(2008HX200941-4-5)

Digital video forgeries detection based on bidirectional motion vectors

HUANG Tian-qiang1,2, CHEN Zhi-wen1   

  1. 1. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China;
    2. Key Laboratory of Network Security and Cryptography, Fujian Normal University, Fuzhou 350007, China
  • Received:2011-04-15 Online:2011-08-16 Published:2011-04-15

摘要:

随着数字视频编辑处理软件的广泛使用,数字视频的篡改检测技术变得越来越重要。本文基于帧间内容连续性,提出一种基于双向运动矢量的视频篡改检测方法。首先对视频双向预测帧(B帧)进行解码,提取双向运动矢量,然后将运动矢量序列中每一个数据对象与左右k近邻最大差值的平均值作为该点的峰值,通过计算峰值序列的均值和标准偏差自适应地设定阈值,对峰值进行检测,从而判断出篡改点。实验结果表明,使用这种篡改检测方法能有效地检测出运动背景下视频帧的删除和插入篡改。

关键词: 视频篡改, 双向运动矢量, 离群点检测, 时序离群点

Abstract:

With the popularity of graphics video editing software, it becomes more and more important to detect digital video forgeries. Based on the continuity of the contents between frames, a digital video forgeries detection method based on bidirectional motion vectors was proposed. By decoding bidirectional prediction video frames (B frames), the bidirectional motion vectors were exacted. Then the average value of the largest difference between each data object in the motion vector sequence and k-neighbors was regarded as the peak point, and by calculating the mean and standard deviation, the threshold was set adaptively to conduct peak detection, and thus the outliers were detected. Experimental results showed that this method could effectively implement the detection of the deletion and insertion tamping of video frame in the moving background.

Key words:  video tampering, bidirectional motion vector, outlier detection, temporal outlier

[1] 辛丽玲, 何威, 于剑, 贾彩燕. 一种基于密度差异的离群点检测算法[J]. 山东大学学报(工学版), 2015, 45(3): 7-14.
[2] 胡云1,2,李慧1,施珺1,蔡虹1. 基于属性约简和相对熵的离群点检测算法[J]. 山东大学学报(工学版), 2011, 41(6): 31-36.
[3] 罗玉盘 商琳. 基于多粒度周期模式的时序离群点检测算法[J]. 山东大学学报(工学版), 2009, 39(3): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!