JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (5): 57-63.doi: 10.6040/j.issn.1672-3961.0.2017.210

Previous Articles     Next Articles

Fault-tolerant control of autonomous underwater vehicle based on adaptive region tracking

CHU Zhenzhong, ZHU Daqi   

  1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
  • Received:2017-04-25 Online:2017-10-20 Published:2017-04-25

Abstract: An adaptive region tracking fault-tolerant control for the thrusters of autonomous underwater vehicle was proposed. Different from the traditional fault-tolerant control methods of autonomous underwater vehicle, the region tracking control theory was adopted, and the control target was designed as a spatial region. For the uncertainty and thruster fault in the system, the neural network was used to identify them online. Considering the problem of the divergence of neural network caused by the thrust saturation during the thruster fault, a neural network weight adjustment method based on a saturation factor was proposed. The effectiveness of the proposed method was verified by simulation.

Key words: fault-tolerant control, autonomous underwater vehicle, thrusters, region tracking, adaptive

CLC Number: 

  • TP27
[1] 朱大奇, 刘乾, 胡震. 无人水下机器人可靠性控制技术[J]. 中国造船,2009,50(2):183-192. ZHU Daqi, LIU Qian, HU Zhen. Reliability control technology of unmanned underwater vehicles[J]. Shipbuilding of China, 2009, 50(2):183-192.
[2] CORRADINI M L, CRISTOFARO A. A nonlinear fault-tolerant thruster allocation architecture for underwater remotely operated vehicles[J]. IFAC-PapersOnLine, 2016, 49(23):285-290.
[3] WANG Y, ZHANG M, WILSON P, et al. Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thrust fault[J]. Ocean Engieering, 2015, 110(1):15-24.
[4] ZHANG M, LIU X, YIN B, et al. Adaptive terminal sliding mode based thruster fault tolerant control for underwater vehicle in time-varying ocean currents[J]. Journal of the Franklin Institute, 2015, 352(11):4935-4961.
[5] ISMAIL Z H, MOKHAR M B M, PUTRANTI V W E, et al. A robust dynamic region-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 2016, 111:155-165.
[6] CHEAH C C, WANG D Q. Region reaching control of robots: theory and experiments[C] // Proceedings of the 2005 IEEE International Conference on Robotics and Automation. [s.l.] :IEEE, 2005:974-979.
[7] LI X, HOU S P, CHEAH C C. Adaptive region tracking control for autonomous underwater vehicle[C] // Proceedings of the 2010 11th International Conference on Control. Automation Robotics & Vision. Singapore: IEEE, 2010:2129-2134.
[8] ISMAIL Z H, DUNNIGAN M W. A region boundary-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 2011, 38(11):2270-2280.
[9] CORRADINI M L, MONTERIU A, ORLANDO G. An actuator failure tolerant control scheme for an underwater remotely operated vehicle[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5):1036-1046.
[10] KIM D W. Tracking of REMUS autonomous underwater vehicles with actuator saturations[J]. Automatica, 2015, 58:15-21.
[11] GAO J, PROCTOR A A, SHI Y, et al. Hierarchical model predictive image-based visual serving of underwater vehicles with adaptive neural network dynamic control[J]. IEEE Transactions on Cybernetics, 2016, 46(10):2323-2334.
[12] 俞建成, 张艾群, 王晓辉,等. 基于模糊神经网络水下机器人直接自适应控制[J]. 自动化学报, 2007, 33(8):840-846. YU Jiancheng, ZHANG Aiqun, WANG Xiaohui, et al. Direct adaptive control of underwater vehicles based on fuzzy neural networks[J]. Acta Automatica Sinica, 2007, 33(8):840-846.
[13] SUN Y S, RAN X R, LI Y M, et al. Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(3):243-251.
[14] 张铭钧, 褚振忠. 自主式水下机器人自适应区域跟踪控制[J]. 机械工程学院, 2013, 4(7):148-155. ZHANG Mingjun, CHU Zhenzhong. Adaptive region tracking control for autonomous underwater vehicle[J]. Journal of Mechanical Engineering, 2013, 4(7):148-155.
[15] HUANG X, YAN Y, ZHOU Y. Neural network-based adaptive second order sliding mode control of Lorentz-augmented spacecraft formation[J]. Neurocopution, 2017, 222(26):191-203.
[16] JIA C, LI X, WANG K, et al. Adaptive control of nonlinear system using online error minimum neural networks[J]. ISA Transactions, 2016, 65:125-132.
[17] PODDER T K, SARKAR N. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy[J]. Robotics and Autonomous Systems, 2001, 34(1):39-52.
[1] ZHOU Qian, LI Qun, ZHU Dandan, LI Yibo. Coordinated inertia response control for offshore low frequency wind power system based on adaptive virtual inertia of M3C [J]. Journal of Shandong University(Engineering Science), 2025, 55(5): 30-39.
[2] LI Xiaohui, LIU Xiaofei, SUN Weitong, ZHAO Yi, DONG Yuan, JIN Yinli. An inspection task assignment and path planning algorithm based on vehicles-UAVs collaboration [J]. Journal of Shandong University(Engineering Science), 2025, 55(5): 101-109.
[3] ZHENG Xiao, CHEN He, ZHOU Dongao, GONG Yongshun. Video anomaly detection method based on video caption augmentation and dual-stream feature fusion [J]. Journal of Shandong University(Engineering Science), 2025, 55(5): 110-119.
[4] GAO Junjian, LIAO Zhuhua, LIU Yizhi, ZHAO Yijiang. Hierarchical multi-agent reinforcement learning based route guidance method combining personalization and signal control [J]. Journal of Shandong University(Engineering Science), 2025, 55(3): 34-45.
[5] Haigen MIN,Yukun FANG,Xia WU,Wuqi WANG. Fault diagnosis of vehicle-to-vehicle communication in networked traffic environment [J]. Journal of Shandong University(Engineering Science), 2021, 51(6): 84-92.
[6] YANG Xiuyuan, PENG Tao, YANG Liang, LIN Hongfei. Adaptive multi-domain sentiment analysis based on knowledge distillation [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 15-21.
[7] LIANG Qixing, LI Bin, LI Zhi, ZHANG Hui, RONG Xuewen, FAN Yong. Algorithm of adaptive slope adjustment of quadruped robot based on model predictive control and its application [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 37-44.
[8] ZHOU Kaiqing, LI Hangcheng, MO Liping. Adaptive harmony search algorithm based on global optimization [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 47-56.
[9] Chunrui CHENG,Beixing MAO. Adaptive sliding mode synchronization of a class of nonlinear chaotic systems [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 1-6.
[10] WANG Chunyan, DI Jinhong, MAO Beixing. Sliding mode synchronization of fractional-order Rucklidge systems with unknown parameters based on a new type of reaching law [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 40-45.
[11] Baocheng LIU,Yan PIAO,Xuemei SONG. Adaptive fusion target tracking based on joint detection [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 51-57.
[12] Wei YAN,Damin ZHANG,Huijuan ZHANG,Ziyun XI,Zhongyun CHEN. Improved bird swarm algorithms based on mixed decision making [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 34-43.
[13] Shengnan ZHANG,Lei WANG,Chunhong CHANG,Benli HAO. Image denoising based on 3D shearlet transform and BM4D [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 83-90.
[14] Jialin SU,Yuanzhuo WANG,Xiaolong JIN,Xueqi CHENG. Entity alignment method based on adaptive attribute selection [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 14-20.
[15] Xiaojie CAO,Xiaohua LI,Hui LIU. Construction expansion online for a class of nonaffine nonlinear large-scale systems [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 35-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[3] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[4] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[5] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[6] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[8] WANG Li-ju,HUANG Qi-cheng,WANG Zhao-xu . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 51 -56 .
[9] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[10] HAO Ranhang,CHEN Shouyu . The theory, model and method of water resources evaluationombining quantity with quality[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 46 -50 .