Journal of Shandong University(Engineering Science) ›› 2026, Vol. 56 ›› Issue (1): 179-188.doi: 10.6040/j.issn.1672-3961.0.2024.317
• Electrical Engineering • Previous Articles
ZHAO Wenmeng1, CHENG Zhe2, ZHOU Baorong1, MAO Tian1, WANG Tao1, WANG Yezhen3*, WU Qiuwei3
CLC Number:
| [1] 于昌海, 庞腊成, 吴继平, 等. 计及多点电池储能系统的电网二次调频协同控制[J]. 电力工程技术, 2024, 43(1): 68-76. YU Changhai, PANG Lacheng, WU Jiping, et al. Coordination control for secondary frequency regulation with participation of multiple battery energy storage systems[J]. Electric Power Engineering Technology, 2024, 43(1): 68-76. [2] WANG S Y, WU W C. Aggregate flexibility of virtual power plants with temporal coupling constraints[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 5043-5051. [3] International Energy Agency. Global energy review: CO2 emissions in 2021[EB/OL].(2022-03-08)[2025-01-03]. https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 [4] 程杉, 李沣洋, 刘炜炜, 等. 电动汽车协助火电机组参与调频辅助服务优化控制策略[J]. 电力系统保护与控制, 2024, 52(6): 142-151. CHENG Shan, LI Fengyang, LIU Weiwei, et al. Optimal control strategy of thermal power units with electric vehicles participating in frequency regulation auxiliary services[J]. Power System Protection and Control, 2024, 52(6): 142-151. [5] GUO J Q, LI Y, SHEN Y W, et al. An incentive mechanism design using cchp-based microgrids for wind power accommodation considering contribution rate[J]. Electric Power Systems Research, 2020, 187: 106434. [6] CHEN J R, LIU M Y, MILANO F. Aggregated model of virtual power plants for transient frequency and voltage stability analysis[J]. IEEE Transactions on Power Systems, 2021, 36(5): 4366-4375. [7] 宁剑, 吴继平, 江长明, 等. 考虑资源运行特性的可调节负荷调峰调频优化控制策略[J]. 电力系统自动化, 2022, 46(15):11-19. NING Jian, WU Jiping, JIANG Changming, et al. Optimal control strategy of peak and frequency regulation for adjustable loads considering operation characteristics of resources[J]. Automation of Electric Power Systems, 2022, 46(15): 11-19. [8] 徐青山, 王栋, 戴蔚莺, 等. 变频空调负荷虚拟同步机化改造及其参与微网互动调控[J]. 电力自动化设备, 2020, 40(3): 8-14. XU Qingshan, WANG Dong, DAI Weiying, et al. Virtual synchronous machine transformation of inverter air conditioning load and its participation in microgrid interactive control[J]. Automation of Electric Power Systems, 2020, 40(3): 8-14. [9] 荆江平, 杨梓俊, 陆晓, 等. 计及补偿效果的需求侧资源调频辅助服务市场机制研究[J]. 电力建设, 2020, 41(2): 30-39. JING Jiangping, YANG Zijun, LU Xiao, et al. Research on market mechanism of frequency-regulation auxiliary service considering demand-side resources[J]. Electric Power Construction, 2020, 41(2): 30-39. [10] SINGH V P, KISHOR N, SAMUEL P, et al. Impact of communication delay on frequency regulation in hybrid power system using optimized H-infinity controller[J]. IETE Journal of Research, 2016, 62(3): 356-367. [11] ZHU Z Q, SUN J, QI G Q, et al. Frequency regulation of power systems with self-triggered control under the consideration of communication costs[J]. Applied Sciences, 2017, 7(7): 688. [12] 陈文哲, 孙海顺, 徐瑞林, 等. 电动汽车参与调频服务的云边融合分层调控技术研究[J]. 中国电机工程学报, 2023, 43(3): 914-927. CHEN Wenzhe, SUN Haishun, XU Ruilin, et al. Cloud-edge collaboration based hierarchical dispatch technology for EV participating in frequency regulation service[J]. Proceedings of the CSEE, 2023, 43(3): 914-927. [13] KONG X Y, SUN Y C, KHAN M A, et al. Cyber-physical system planning for VPPs supporting frequency regulation considering hierarchical control and multidimensional uncertainties[J]. Applied Energy, 2024, 353: 122104. [14] 刘辉, 吴晓鸣, 苏懿. 基于动态下垂控制的温控负荷一次调频控制策略[J]. 电力工程技术, 2023, 42(2): 48-57. LIU Hui, WU Xiaoming, SU Yi. Thermostatically controlled loads control for primary frequency regulation based on dynamic droop control[J]. Electric Power Engineering Technology, 2023, 42(2): 48-57. [15] 李梓瑄, 包宇庆, 宋梦, 等. 计及开关寿命损耗的温控负荷分布式控制策略[J]. 电力工程技术, 2022, 41(4): 75-82. LI Zixuan, BAO Yuqing, SONG Meng, et al. Distributed control strategy of temperature control loads considering switch life loss[J]. Electric Power Engineering Technology, 2022, 41(4): 75-82. [16] PINTO P C, WIN M Z. Communication in a Poisson field of interferers: part I: interference distribution and error probability[J]. IEEE Transactions on Wireless Communications, 2010, 9(7): 2176-2186. [17] FARIVAR M, LOW S H. Branch flow model: relaxations and convexification: part I[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2554-2564. [18] 祁兵, 陈淑娇, 李彬, 等. 计及用户满意度的可调节负荷资源需求响应优化策略研究[J]. 内蒙古电力技术, 2023, 41(3): 43-50. QI Bing, CHEN Shujiao, LI Bin, et al. Research on demand response optimization strategy of adjustable load resource considering user satisfaction[J]. Inner Mongolia Electric Power, 2023, 41(3): 43-50. [19] 杨恺, 姚宇, 孙可, 等. 考虑用户满意度的温控负荷能效综合指标模型和调峰策略[J]. 电力需求侧管理, 2022, 24(5):36-43. YANG Kai, YAO Yu, SUN Ke, et al. Energy efficiency assessment model and peak shaving strategy for TCLs considering consumer satisfaction [J]. Power Demand Side Management, 2022, 24(5):36-43. [20] HAO J, ZHAO W M, ZHANG Z B, et al. Coordinated frequency regulation strategy for multiple demand-side resources considering carbon emissions[C] // 2024 6th Asia Energy and Electrical Engineering Symposium(AEEES). Chengdu, China: IEEE, 2024: 162-167. [21] 李兆伟, 张恒旭, 曹永吉, 等. 计及锅炉热动态影响的机组一次调频能力评估方法[J]. 山东大学学报(工学版), 2022, 52(5): 35-43. LI Zhaowei, ZHANG Hengxu, CAO Yongji, et al. Assessment scheme for primary frequency regulation capability considering boiler thermal dynamic[J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 35-43. |
| [1] | ZHAO Kang, WANG Chunyi, YANG Dong, LIU Yutian. Short circuit current limiting optimization of ultra-high voltage receiving-end power grid [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 117-124. |
| [2] | WANG Ming. Fault line selection method of distribution network based on the relative change rate in dominant bands [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(4): 25-30. |
|
||