Journal of Shandong University(Engineering Science) ›› 2026, Vol. 56 ›› Issue (1): 149-157.doi: 10.6040/j.issn.1672-3961.0.2024.228

• Electrical Engineering • Previous Articles    

Prediction of shell vibration of coal mill lower frame body based on modal analysis and PCA-WOA-RF

ZHAO Xiaohui1, LIU Lei1, PU Junping1, CHENG Xiaole1, GAO Chang2, HU Sheng1   

  1. ZHAO Xiaohui1, LIU Lei1, PU Junping1, CHENG Xiaole1, GAO Chang2, HU Sheng1(1. School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China;
    2. Guoneng Changyuan Wuhan Qingshan Thermal Power Co., Ltd., Wuhan 430080, Hubei, China
  • Published:2026-02-03

Abstract: In order to investigate the complex nonlinear mapping relationship between the shell vibration of the lower frame body of the coal mill and other operating parameters, and to improve the accuracy of the prediction of the shell vibration of the lower frame body of the coal mill, a prediction method of the shell vibration of the lower frame body of the coal mill based on the PCA-WOA-RF model was proposed. Modal analysis was carried out on the lower frame body of the coal mill to verify the standard value of shell vibration of the lower frame body, correlation analysis was conducted on the working data of the coal mill using Spearman correlation coefficient method and principal component analysis(PCA)method and principal components were extracted. Random forests(RF)were used as the basis of the structure of the prediction model, and the hyperparameters of the model were optimised using whale optimisation algorithm(WOA). The coal mill working data of Guoneng Changyuan Wuhan Qingshan Thermal power Co., Ltd. was used as an example for validation, and the accuracy was compared with PCA-BP, PCA-SVM and PCA-RF models. The results showed that the primary air flow, tie rod strain, coal mill motor shaft vibration, mid-frame body shell vibration, coal volume and primary air inlet and outlet differential pressure were significantly correlated with the lower frame body shell vibration of the coal mill, the variance contribution of the two principal components extracted by principal component analysis was 94.569%, and the proposed PCA-WOA-RF model had the smallest average prediction error, and the prediction accuracy reached 97.80%. The model further improved the prediction accuracy of the shell vibration of the lower frame body of the coal mill.

Key words: coal mill, lower frame shell vibration, principal component analysis, Random Forest, whale optimization algorithm

CLC Number: 

  • TM621
[1] 刘会令. MPS190型磨煤机振动、漏风、减速机加热器问题的处理[J]. 中国新技术新产品, 2021(4): 64-66. LIU Huiling. Treatment of vibration, air leakage and heater of reducer of MPS190 coal mill[J]. New Technology & New Products of China, 2021(4): 64-66.
[2] 吴宏伦. ZGM95G中速磨煤机传动盘裙边的修复[J]. 江苏电机工程, 2010, 29(2): 61-63. WU Honglun. The repair of the skirt border of transmission tray of ZGM95G medium speed mill[J]. Jiangsu Electrical Engineering, 2010, 29(2): 61-63.
[3] 贾春梅. 中速磨煤机下架体泄漏分析及改造[J]. 科技与企业, 2013(17): 276-277. JIA Chunmei. Leakage analysis and transformation of lower frame of medium-speed coal mill [J]. Technology and Enterprise, 2013(17): 276-277.
[4] GAO Y K, ZENG D L, LIU J Z. Modeling of a medium speed coal mill[J]. Powder Technology, 2017, 318: 214-223.
[5] ZENG D L, HU Y, GAO S, et al. Modelling and control of pulverizing system considering coal moisture[J]. Energy, 2015, 80: 55-63.
[6] LI X W, WU Y C, CHEN H F, et al. Coal mill model considering heat transfer effect on mass equations with estimation of moisture[J]. Journal of Process Control, 2021, 104: 178-188.
[7] 王朝阳, 石慧, 王文毓, 等. MPS型磨煤机制粉系统动态模型与瞬态运行优化控制研究[J]. 中国电机工程学报, 2024, 44(16): 6518-6529. WANG Chaoyang, SHI Hui, WANG Wenyu, et al. Study on dynamic model and transient operation optimization control of the MPS coal mill pulverizing system[J]. Proceedings of the CSEE, 2024, 44(16): 6518-6529.
[8] 屈子尧, 陈敏, 姚啸林. 分离器转速对中速磨煤机风粉分配的影响[J]. 热力发电, 2024, 53(4): 141-149. QU Ziyao, CHEN Min, YAO Xiaolin. Influence of separator rotation speed on air-powder distribution in medium-speed coal pulverizer[J]. Thermal Power Generation, 2024, 53(4): 141-149.
[9] 丁皓轩, 李松山, 唐文, 等. 对冲燃烧锅炉两侧主蒸汽温度偏差的预测模型及问题诊断[J]. 锅炉技术, 2024, 55(2): 32-38. DING Haoxuan, LI Songshan, TANG Wen, et al. Prediction model and problem diagnosison main steam temperature deviation of opposed firing boiler [J]. Boiler Technology, 2024, 55(2): 32-38.
[10] 张志勇, 陆金桂, 张猛. 基于WOA-BP神经网络的磨煤机出粉量估算[J]. 电子测量技术, 2022, 45(22): 157-161. ZHANG Zhiyong,LU Jingui, ZHANG Meng. Estimation of powder output of coal mill based on WOA-BP neural network. Electronic Measurement Technology, 2022, 45(22): 157-161.
[11] 张坚群, 张新胜. 基于自适应递推最小二乘支持向量机的磨煤机一次风量软测量模型[J]. 热力发电, 2021, 50(11): 137-143. ZHANG Jianqun, ZHANG Xinsheng. Soft measurement model of primary air flow of coal mill based on self-adaptive recursive LSSVM[J]. Thermal Power Generation, 2021, 50(11): 137-143.
[12] 陈金楷, 夏季, 谭鹏, 等. 结合相空间重构和ELM的磨煤机振动软测量[J]. 热力发电, 2015, 44(3): 42-47. CHEN Jinkai, XIA Ji, TAN Peng, et al. Phase space reconstruction and ELM based soft measurement for vibration of a mill with multiple parameters and coal types[J]. Thermal Power Generation, 2015, 44(3): 42-47.
[13] 王辉, 邹智超, 李欣, 等. 基于VMD-ISSA-GRU组合模型的短期风电功率预测[J]. 热力发电, 2024, 53(5): 122-131. WANG Hui, ZOU Zhichao, LI Xin, et al. Short-term wind power prediction based on VMD-ISSA-GRU comprehensive model[J]. Thermal Power Generation, 2024, 53(5): 122-131.
[14] 李影, 卓建坤, 吴逸凡, 等. 可解释的变负荷下燃煤机组SCR反应器入口NOx质量浓度预测模型[J]. 热力发电, 2024, 53(7): 119-128. LI Ying, ZHUO Jiankun, WU Yifan, et al. Interpretable prediction model for NOx mass concentration at SCR reactor inlet in coal-fired power plants under flexible operating conditions[J]. Thermal Power Generation, 2024, 53(7): 119-128.
[15] 李静立, 王谦, 张军, 等. 基于阶次分析的风电机组在线模态参数识别与故障诊断[J]. 山东大学学报(工学版), 2017, 47(4): 96-102. LI Jingli, WANG Qian, ZHANG Jun, et al. Online modal parameter identification and fault diagnosis of wind turbines based on order analysis[J]. Journal of Shandong University(Engineering Science), 2017, 47(4): 96-102.
[16] 张海龙, 李雯, 张锋, 等. 中速磨煤机振动影响因素的研究[J]. 热力发电, 2023, 52(12): 190-197. ZHANG Hailong, LI Wen, ZHANG Feng, et al. Research on influence factors of vibration of medium speed coalpulverizers[J]. Thermal Power Generation, 2023, 52(12): 190-197.
[17] 吴军英, 路欣, 刘宏, 等. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. WU Junying, LU Xin, LIU Hong, et al. Ultra-short-term multi-region power load forecasting based on spearman-GCN-GRU model[J]. Electric Power, 2024, 57(6): 131-140.
[18] 孙东磊, 王艳, 于一潇, 等. 基于BP神经网络的短期光伏集群功率区间预测[J]. 山东大学学报(工学版), 2020, 50(5): 70-76. SUN Donglei, WANG Yan, YU Yixiao, et al. Interval prediction of short-term regional photovoltaic power based on BP neural network[J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 70-76.
[19] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[20] 李鸿钊, 张庆松, 刘人太, 等. 浅埋地铁车站施工期地表变形风险预警[J]. 山东大学学报(工学版), 2023, 53(6): 82-91. LI Hongzhao, ZHANG Qingsong, LIU Rentai,et al. Risk state early warning of the surface deformation of shallow buried subway station[J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 82-91.
[21] 尤勇, 孟云龙, 吴景涛, 等. 基于鲸鱼优化算法-支持向量回归的汽车运动状态估计[J]. 中国机械工程, 2024, 35(6): 973-981. YOU Yong, MENG Yunlong, WU Jingtao,et al. Vehicle motion state estimation based on WOA-SVR[J]. China Mechanical Engineering, 2024, 35(6): 973-981.
[22] 汤明, 王汉昌, 何世明, 等. 基于PCA-BP算法的机械钻速预测研究[J]. 石油机械, 2023, 51(10): 23-31. TANG Ming, WANG Hanchang, HE Shiming, et al. Prediction for rate of penetration based on PCA-BP algorithm[J]. China Petroleum Machinery, 2023, 51(10): 23-31.
[23] 杨文锋, 林德惠, 曹宇, 等. 基于PCA-SVM的飞机蒙皮激光分层除漆LIBS在线监测研究[J]. 光谱学与光谱分析, 2023, 43(12): 3891-3898. YANG Wenfeng, LIN Dehui, CAO Yu, et al. Study on LIBS online monitoring of aircraft skin laser layered paint removal based on PCA-SVM[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3891-3898.
[24] 何珂, 杨顺新, 郜勇刚. 基于PCA-RF组合模型的隧道交通事故持续时间预测[J]. 交通信息与安全, 2019, 37(5): 26-32. HE Ke, YANG Shunxin, GAO Yonggang. Prediction of traffic incident duration in tunnels based on a PCA-RF combined model[J]. Journal of Transport Information and Safety, 2019, 37(5): 26-32.
[25] 孙鸿昌, 周风余, 单明珠, 等. 基于模式划分的空调能耗混合填补方法[J]. 山东大学学报(工学版), 2022, 52(1): 9-18. SUN Hongchang, ZHOU Fengyu, SHAN Mingzhu, et al. Mode division based hybrid filling method of air conditioning energy consumption[J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 9-18.
[1] Yinfeng MENG,Qingfang LI. Recognition learning based on multivariate functional principal component representation [J]. Journal of Shandong University(Engineering Science), 2022, 52(3): 1-8.
[2] LIU Xinfeng, ZHANG YiNi, XU Huisan, SONG Ling, CHEN Mengya. Shadow occlusion diagnosis of distributed photovoltaic power station based on random forest and expert system [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 98-104.
[3] SUN Donglei, WANG Yan, YU Yixiao, HAN Xueshan, YANG Ming, YAN Fangqing. Interval prediction of short-term regional photovoltaic power based on BP neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 70-76.
[4] QIAN Wenguang, LI Huimin. A similarity subspace embedding algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 8-14.
[5] YANG Yawei, SONG Bing, SHI Hongbo. Chemical process monitoring based on two step subspace division [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 110-117.
[6] MA Xiangming, SUN Xia, ZHANG Qiang. Construction and analysis on typical working cycle of wheel loader [J]. Journal of Shandong University(Engineering Science), 2015, 45(5): 82-87.
[7] LI Faquan, YANG Licai, YAN Hongbo. An emotion recognition method of multiphysiological information fusion based on PCA-SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 70-76.
[8] LIU Lijun1, MA Yumei1, MENG Jiana2. Adaptive dual learning algorithm for principal (minor) component analysis along geodesic on Stiefel manifold [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 1-5.
[9] FANG Xiao-nan1,2, ZHANG Hua-xiang1,2*, GAO Shuang1,2. Web spam detection based on SMOTE and random forests [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 22-27.
[10] LIU Hai-qing, YANG Li-cai*, WU Lei, KONG Lu-lu. Regional traffic congestion evaluation based on Fuzzy-PCA [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 56-62.
[11] DING Yan, LI Yong-zhong*. Research on intrusion detection algorithm based on PCA and semisupervised clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 41-46.
[12] SUN Jing-jie1, ZHAO Jian-jun2*, YAO Yue-ting3, YAO Gang1. Improved RPCA method based on variable forgetting factor and its application in adaptive fault monitoring [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 60-66.
[13] ZHAI Jun-hai1, ZHAI Meng-yao1, ZHANG Su-fang2, WANG Xi-zhao1. Face recognition based on ensemble of wavelet subspaces [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 1-6.
[14] CUI Yan, FAN Li-ya. Comparison of KPCA transformation matrices with definite and indefinite kernels for high-dimensional data [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 17-23.
[15] SUN Guo-xia,SUN Xing-hua,BAI Shu-zhong,LIU Ju,SUN Jian-de . Research on face image retrieval based on principal independent content features [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(4): 81-84 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!