您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (5): 82-86.

• 论文 • 上一篇    下一篇

基于免疫网络的无监督式分类算法

梁春林1,彭凌西2*   

  1. 1. 广东海洋大学信息学院, 广东 湛江 524088; 2.  广州大学计算机学院, 广东 广州 510006
  • 收稿日期:2010-04-23 出版日期:2010-10-16 发布日期:2010-04-23
  • 通讯作者: 彭凌西(1978-),男,湖南岳阳人,副教授,博士,主要研究方向为网络安全. E-mail:E-mail:scu.peng@gmail.com
  • 作者简介:梁春林(1975-),男,广东湛江人,讲师,硕士,主要研究方向为人工智能.E-mail:yes2384735@126.com

An immune network based unsupervised classifier

LIANG Chun-lin1, PENG Ling-xi2*   

  1. 1. School of Information, Guangdong Ocean University, Zhanjiang 524088, China;
    2. School of Computer Science, Guangzhou University, Guangzhou 510006, China
  • Received:2010-04-23 Online:2010-10-16 Published:2010-04-23

摘要:

基于免疫网络原理,提出了一种新的无监督式分类算法。首先基于形态空间理论给出了抗体、抗原和免疫网络的形式化定义,建立了抗体克隆选择、高频变异以及免疫记忆的动态模型和相应的数学方程,最后给出了分类过程。实验表明该算法的分类精度要高于其它传统的聚类算法,并具有很好的持续学习、动态调节、特性记忆等特性。如果把抗体视为某种既定模式,合理地调整抗原集合,则该模型具有广泛的用途。

关键词: 无监督式分类, 免疫网络, 机器学习

Abstract:

A novel unsupervised classification algorithm based immune network was presented. First of all, the formal definitions of antibodies, antigens and immune network were given according to shape space theory, respectively. Afterward, the mathematical models and corresponding equations were established, such that the clonal selection and highfrequency mutation of antibodies, the immunological memory, and etc. Finally, the process of unsupervised classification was presented. The experimental results showed that the algorithm achieves the higher classification accuracy than other traditional clustering algorithms, and has some better characters such that continuous learning, dynamic adjustment, features remembering, and etc. If the antibody is regarded as a given model, and rationalizes the antigens collection, then the model has a wide range of applications.

Key words: unsupervised classification, immune network, machine learning

[1] 祝明,石承龙,吕潘,刘现荣,孙驰,陈建城,范宏运. 基于优化长短时记忆网络的深基坑变形预测方法及其工程应用[J]. 山东大学学报 (工学版), 2025, 55(3): 141-148.
[2] 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12.
[3] 乔慧妍,段学龙,解驰皓,赵冬慧,马玉玲. 基于异常点检测的心理健康辅助诊断方法[J]. 山东大学学报 (工学版), 2024, 54(4): 76-85.
[4] 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63.
[5] 岳仁峰,张嘉琦,刘勇,范学忠,李琮琮,孔令鑫. 基于颜色和纹理特征的立体车库锈蚀检测技术[J]. 山东大学学报 (工学版), 2024, 54(3): 64-69.
[6] 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪[J]. 山东大学学报 (工学版), 2024, 54(1): 100-108.
[7] 卞小曼,王小琴,蓝如师,刘振丙,罗笑南. 基于相似性保持和判别性分析的快速视频哈希算法[J]. 山东大学学报 (工学版), 2023, 53(6): 63-69.
[8] 李鸿钊,张庆松,刘人太,陈新,辛勤,石乐乐. 浅埋地铁车站施工期地表变形风险预警[J]. 山东大学学报 (工学版), 2023, 53(6): 82-91.
[9] 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44.
[10] 聂秀山,马玉玲,乔慧妍,郭杰,崔超然,于志云,刘兴波,尹义龙. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报 (工学版), 2022, 52(2): 1-14.
[11] 孙鸿昌,周风余,单明珠,翟文文,牛兰强. 基于模式划分的空调能耗混合填补方法[J]. 山东大学学报 (工学版), 2022, 52(1): 9-18.
[12] 袁高腾,刘毅慧,黄伟,胡兵. 基于Gabor特征的乳腺肿瘤MR图像分类识别模型[J]. 山东大学学报 (工学版), 2020, 50(3): 15-23.
[13] 高铭壑,张莹,张蓉蓉,黄子豪,黄琳焱,李繁菀,张昕,王彦浩. 基于预测数据特征的空气质量预测方法[J]. 山东大学学报 (工学版), 2020, 50(2): 91-99.
[14] 张大鹏,刘雅军,张伟,沈芬,杨建盛. 基于异质集成学习的虚假评论检测[J]. 山东大学学报 (工学版), 2020, 50(2): 1-9.
[15] 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[2] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[3] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[6] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[7] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[8] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[9] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .
[10] 孙玉利,李法德,左敦稳,戚美 . 直立分室式流体连续通电加热系统的升温特性[J]. 山东大学学报(工学版), 2006, 36(6): 19 -23 .