山东大学学报 (工学版) ›› 2026, Vol. 56 ›› Issue (1): 105-113.doi: 10.6040/j.issn.1672-3961.0.2024.289
• 土木工程 • 上一篇
郭敏1,2,韩林轩1*,李京军1
GUO Min1,2, HAN Linxuan1*, LI Jingjun1
摘要: 以低碳环保为目标,探索将固废钢渣应用到超高性能混凝土(ultra high performance concrete, UHPC)中,制备绿色环保钢渣UHPC。通过轴向拉伸试验,研究钢渣微粉替换水泥、钢渣骨料替换石英砂及同时替换时不同掺量,对UHPC轴拉全曲线、力学指标等的影响规律,并分析钢渣UHPC受拉破坏机理。试验结果表明,替换钢渣微粉或钢渣骨料后,UHPC轴向抗拉强度下降,但仍能保持UHPC基本水平。钢渣掺量对材料延性影响明显,单独掺钢渣微粉,试件延性增强;单独掺钢渣骨料,试件延性降低。混合掺量较小时,材料延性较好,呈多裂缝破坏形态。通过分析钢渣UHPC各受拉应力、应变特征值,给出钢渣掺量建议值。
中图分类号:
| [1] AKEED M H, QAIDI S, AHMED H U, et al. Ultra-high-performance fiber-reinforced concrete. part 3: fresh and hardened properties[J]. Case Studies in Construction Materials, 2022, 17: e01265. [2] YOO D Y, BANTHIA N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: a review[J]. Cement and Concrete Composites, 2016, 73: 267-280. [3] LI P P, BROUWERS H J H, YU Q L. Influence of key design parameters of ultra-high performance fibre reinforced concrete on in-service bullet resistance[J]. International Journal of Impact Engineering, 2020, 136: 103434. [4] LI P P, SLUIJSMANS M J C, BROUWERS H J H, et al. Functionally graded ultra-high performance cementitious composite with enhanced impact properties[J]. Composites Part B: Engineering, 2020, 183: 107680. [5] WANG W, LIU J, AGOSTINI F, et al. Durability of anultra high performance fiber reinforced concrete(UHPFRC)under progressive aging[J]. Cement and Concrete Research, 2014, 55: 1-13. [6] AKEED M H, QAIDI S, AHMED H U, et al. Ultra-high-performance fiber-reinforced concrete. part II: hydration and microstructure[J]. Case Studies in Construction Materials, 2022, 17: e01289. [7] SHI C J, WU Z M, XIAO J F, et al. A review onultra high performance concrete: Part I. Raw materials and mixture design[J]. Construction and Building Materials, 2015, 101: 741-751. [8] AKEED M H, QAIDI S, FARAJ R H, et al. Ultra-high-performance fiber-reinforced concrete. Part Ⅰ: developments, principles, raw materials[J]. Case Studies in Construction Materials, 2022, 17: e01290. [9] FAN D Q, YU R, SHUI Z H, et al. A new development of eco-friendly Ultra-High performance concrete(UHPC): towards efficient steel slag application and multi-objective optimization[J]. Construction and Building Materials, 2021, 306: 124913. [10] 彭术, 陈浩, 水中和, 等. 废弃混凝土再生粉制备超高性能混凝土基体的性能研究[J]. 硅酸盐通报, 2019, 38(7): 2125-2130. PENG Shu, CHEN Hao, SHUI Zhonghe, et al. Properties of ultra-high performance concrete matrix prepared with powder of waste concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2125-2130. [11] 许娜, 陈军琪. 复掺粉煤灰和矿渣对高性能混凝土抑制骨料碱活性效能及其强度的影响研究[J]. 价值工程, 2019, 38(17): 158-160. XU Na, CHEN Junqi. Effect of complex fly ash and slag on the activity and strength of high performance concrete for inhibiting aggregate alkali activity[J]. Value Engineering, 2019, 38(17): 158-160. [12] 简洪树. 绿色超高性能钢纤维增强混凝土的静动态韧性研究[D]. 哈尔滨:哈尔滨工业大学, 2019. JIAN Hongshu. Research on static and dynamic toughness of green ultra-high performance steel fiber reinforced concrete[D]. Harbin: Harbin Institute of Technology, 2019. [13] 高陟, 任鑫明, 马北越. 钢渣高附加值利用研究现状[J]. 耐火与石灰, 2021, 46(4): 13-17. GAO Zhi, REN Xinming, MA Beiyue. Research status of high value-added utilization of steel slag[J]. Refractories & Lime, 2021, 46(4): 13-17. [14] 国家市场监督管理总局, 国家标准化管理委员会. 水泥压蒸安定性试验方法: GB/T 750—2024[S]. 北京: 中国标准出版社, 2024. [15] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 钢渣应用技术要求: GB/T 32546—2016[S]. 北京: 中国标准出版社, 2017. [16] JABIR H A, ABID S R, MURALI G, et al. Experimental tests and reliability analysis of the cracking impact resistance of UHPFRC[J]. Fibers, 2020, 8(12): 74. [17] FUJIKAKE K, SENGA T, UEDA N, et al. Effects of strain rate on tensile behavior of reactive powder concrete[J]. Journal of Advanced Concrete Technology, 2006, 4(1): 79-84. [18] WILLE K, KIM D J, NAAMAN A E. Strain-hardening UHP-FRC with low fiber contents[J]. Materials and Structures, 2011, 44(3): 583-598. [19] FRETTLÖHR B, REINECK K H, REINHARDT H W. Size and shape effect of UHPFRC prisms tested under axial tension and bending[M] //High Performance Fiber Reinforced Cement Composites 6. Dordrecht: Springer Netherlands, 2012: 365-372. [20] TIAN X, FANG Z, ZHOU T, et al. Behavior and constitutive model of ultra-high-performance concrete under monotonic and cyclic tensile loading[J]. Construction and Building Materials, 2023, 389: 131634. |
| [1] | 薛刚, 张一帆, 刘江森, 董伟. 钢渣细骨料混凝土软化曲线逆推分析[J]. 山东大学学报 (工学版), 2025, 55(6): 120-128. |
| [2] | 李温,王海龙,张佳豪,杨虹,王磊,冯帅. 矸石混合骨料混凝土力学特性及孔隙结构试验研究[J]. 山东大学学报 (工学版), 2023, 53(3): 121-127. |
| [3] | 李军伟,徐飞,王兵,高阳. 混凝土不同骨料粒径对声发射检测的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 84-90. |
| [4] | 王海龙,王培,王磊,张克. 废旧橡胶粉对混合骨料混凝土力学特征的影响[J]. 山东大学学报(工学版), 2016, 46(6): 89-96. |
| [5] | 卜良桃,袁海涛. 纤维水泥砂浆与混凝土粘结性能双面剪切试验研究[J]. 山东大学学报(工学版), 2016, 46(4): 76-82. |
| [6] | 葛智1,孟繁博2,岳红亚1,胡益彰1. PET-砖粉砂浆的耐久性研究[J]. 山东大学学报(工学版), 2014, 44(2): 76-79. |
| [7] | 王甲春1,张照华2,苏宁3. 混凝土渗透性的原位测试与评价[J]. 山东大学学报(工学版), 2013, 43(5): 74-79. |
| [8] | 姚占勇,韩杰*,商庆森,葛智,张晓萌,崔衡. 碳纤维石墨导电沥青砂浆压敏性能研究[J]. 山东大学学报(工学版), 2013, 43(1): 80-85. |
| [9] | 高桂波1, 钱春香2, 岳钦艳3, 王勇威1, 鲁统卫1. 预填埋相变材料对混凝土水化热温升的降低效果[J]. 山东大学学报(工学版), 2011, 41(6): 91-96. |
| [10] | 姚占勇,张燕军 . 沥青混合料用纤维性能分析[J]. 山东大学学报(工学版), 2008, 38(4): 69-74 . |
| [11] | 高鹏,倪庄,周浩然,王义猛,王珏. 陶瓷抛光渣与硅灰对碱-硅酸反应的抑制作用[J]. 山东大学学报 (工学版), 2026, 56(1): 89-96. |
| [12] | 董伟,周梦虎,王雪松,薛刚,王栋. 碳化-冻融作用对风积沙混凝土氯离子传输的影响[J]. 山东大学学报 (工学版), 2024, 54(1): 123-130. |
| [13] | 张启懿,邹春霞,郭晓松,宋育鑫,郑建庭,赵溢. NaOH改善粉煤灰混凝土微结构及抗风蚀-冻融耐久性能[J]. 山东大学学报 (工学版), 2024, 54(4): 131-140. |
| [14] | 董伟,朱相茹,王雪松,周梦虎. 氯盐干湿循环下风积沙混凝土微观结构演变[J]. 山东大学学报 (工学版), 2024, 54(4): 115-121. |
| [15] | 义扬,肖映雄,余科. 任意多边形骨料混凝土细观模型的建立与数值模拟[J]. 山东大学学报 (工学版), 2025, 55(1): 97-107. |
|
||