山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 112-118.doi: 10.6040/j.issn.1672-3961.0.2018.356
摘要:
针对传统井下定位成本高、工作危险系数大的问题,提出一种基于信道状态信息(channel state information, CSI)的轻量级自适应井下定位(lightweight self-adaptive underground positioning algorithm, LSA)方法。LSA方法以细粒度的CSI替代粗粒度的接收信号强度(received signal strength indicator, RSSI)来获得更高的定位精度,采用逆傅里叶变换将原始CSI数据转换为信道脉冲响应,以此选取视距信号,并通过构建CSI视距信号衰减模型实现轻量级的精确测距;基于井下现有WiFi网络中的访问接入点(access points, APs)位置和井下巷道特征,计算目标相对AP的方向,根据方向和测距结果完成定位。该方法能够自适应于AP在巷道中的任意位置部署,并利用拐角识别优化算法进一步提高定位的精度。试验结果表明,该方法能够使得定位中位数误差达到0.53 m,且无需在井下单独部署任何定位系统,性能明显优于已提出的CDPF、FILA等其他定位算法。
中图分类号:
| 1 | SALAZAR A S, AGUILAR L, LICEA G. Estimating indoor zone-level location using Wi-Fi RSSI fingerprinting based on fuzzy inference system[C]//International Conference on Mechatronics, Electronics and Automotive Engineering. Morelos, Mexico: IEEE, 2013: 178-184. |
| 2 | ZAFARI F, PAPAPANAGIOTOU I, HACKER T J. A novel Bayesian filtering based algorithm for RSSI-based indoor localization[C]//IEEE International Conference on Communications. Kansas City, USA: IEEE, 2018: 79-84. |
| 3 | SHUE S, CONRAD J M. Reducing the effect of signal multipath fading in RSSI-distance estimation using Kalman filters[C]//Communications & Networking Symposium. San Diego, USA: Society for Computer Simulation International, 2016: 5. |
| 4 | XUE W , HUA X , LI Q , et al. A new weighted algorithm based on the uneven spatial resolution of RSSI for indoor localization[J]. IEEE Access, 2018, 6 (99): 26588- 26595. |
| 5 | 曾碧, 毛勤. 改进的室内三维模糊位置指纹定位算法[J]. 山东大学学报(工学版), 2015, 45 (3): 22- 27. |
| ZENG Bi , MAO Qin . Improved indoor 3-D fuzzy position fingerprint localization algorithm[J]. Journal of Shandong University (Engineering Science), 2015, 45 (3): 22- 27. | |
| 6 | IEEE. Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: policies and procedures for operation in the TV bands: ANSI/IEEE Std 802.11v[S]. New York, USA: LAN/MAN Standards Committee of the IEEE Computer Society Std., 2011. |
| 7 |
HALPERIN D , HU W , SHETH A , et al. Tool release: gathering 802.11n traces with channel state information[J]. Acm Sigcomm Computer Communication Review, 2011, 41 (1): 53- 53.
doi: 10.1145/1925861.1925870 |
| 8 | LIU Y , DRAPER S C , SAYEED A M . A secret key generation system based on multipath channel randomness: RSSI vs CSSI[J]. Information Forensics & Security IEEE Transactions on, 2011, (5): 1484- 1497. |
| 9 |
SHI S , SIGG S , CHEN L , et al. Accurate location tracking from CSI-based passive device-free probabilistic fingerprinting[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (6): 5217- 5230.
doi: 10.1109/TVT.2018.2810307 |
| 10 | LIAO L , ZAKHAROV Y , MITCHELL P D . Underwater localization based on grid computation and its application to transmit beamforming in multiuser uwa communications[J]. IEEE Access, 2018, (6): 4297- 4307. |
| 11 | WANG X , GAO L , MAO S , et al. CSI-based fingerprinting for indoor localization: a deep learning approach[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (1): 763- 776. |
| 12 | WU K , XIAO J , YI Y , et al. FILA: fine-grained indoor localization[J]. Proceedings-IEEE INFOCOM, 2012, 131 (5): 2210- 2218. |
| 13 | WU K , XIAO J , YI Y , et al. CSI-based indoor localization[J]. IEEE Transactions on Parallel & Distributed Systems, 2013, 24 (7): 1300- 1309. |
| 14 |
SONG Q , GUO S , LIU X , et al. CSI amplitude fingerprinting-based NB-IoT indoor localization[J]. IEEE Internet of Things Journal, 2018, 5 (3): 1494- 1504.
doi: 10.1109/JIOT.2017.2782479 |
| 15 | SEN S, CHOUDHURY R R, MINKA T. You are facing the Mona Lisa: spot localization using PHY layer information[C]//International Conference on Mobile Systems, Applications, and Services. New York, USA: ACM, 2012: 183-196. |
| 16 | 张一衡, 崔琪楣, 陶小峰. 多用户MIMO-OFDM系统低速率CSI反馈方法及信道容量分析[J]. 电子与信息学报, 2009, 31 (9): 2188- 2192. |
| ZHANG Yiheng , CUI Qimei , TAO Xiaofeng . Low rate CSI feedback and capacity analysis in multiuser-MIMO-OFDM System[J]. Journal of Electronics & Information Technology, 2009, 31 (9): 2188- 2192. | |
| 17 | 胡楚锋, 郭淑霞, 李南京, 等. 超视距宽带信号同步测量技术研究[J]. 仪器仪表学报, 2014, (11): 2531- 2537. |
| HU Chufeng , GUO Shuxia , LI Nanjing , et al. Synchronous measurement for a wideband signal at non-line-of-sight[J]. Chinese Journal of Scientific Instrument, 2014, (11): 2531- 2537. | |
| 18 | WANG X, WANG X, MAO S. ResLoc: deep residual sharing learning for indoor localization with CSI tensors[C]//International Symposium on Personal, Indoor, and Mobile Radio Communications. Montreal, Canada: IEEE, 2018. |
| 19 |
龙保任, 王峰, 利传迈, 等. 基于聚类的组合时间反转算法的CSI指纹室内定位研究[J]. 电视技术, 2018, 42 (11): 58- 63.
doi: 10.3969/j.issn.1671-8658.2018.11.015 |
|
LONG Baoren , WANG Feng , LI Chuanmai , et al. Research on CSI fingerprint indoor positioning based on clustering-based combined time reversal algorithm[J]. Video Engineering, 2018, 42 (11): 58- 63.
doi: 10.3969/j.issn.1671-8658.2018.11.015 |
|
| 20 | WANG X , GAO L , MAO S . CSI phase fingerprinting for indoor localization with a deep learning approach[J]. IEEE Internet of Things Journal, 2017, 3 (6): 1113- 1123. |
| 21 | CHAPRE Y, IGNJATOVIC A, SENEVIRATNE A, et al. CSI-MIMO: Indoor Wi-Fi fingerprinting system[C]//Local Computer Networks. Edmonton, Canada: IEEE, 2014: 202-209. |
| 22 | HALPERIN D, HU W, SHETH A, et al. Predictable 802.11 packet delivery from wireless channel measurements[C]//ACM SIGCOMM 2010 Conference. New Delhi, India: ACM, 2010: 159-170. |
| 23 | 马德鹏, 杨永杰, 曹吉胜, 等. 基于能量释放的深井巷道断面形状优化[J]. 中南大学学报(自然科学版), 2015, 46 (9): 3354- 3360. |
| MA Depeng , YANG Yongjie , CAO Jisheng , et al. Optimization design of cross section shape of deep roadways based on characteristics of energy release[J]. Journal of Central South University(Science and Technology), 2015, 46 (9): 3354- 3360. | |
| 24 | RAPPAPORT T S . Wireless communications: principles and practice[M]. 2nd ed Upper Saddle River, USA: Prentice Hall, 2001. |
| 25 | WANG Y, ZHOU Z, WU K. Sensor-free corner shape detection by wireless networks[C]//IEEE International Conference on Parallel and Distributed Systems. Taiwan, China: IEEE, 2015: 306-312. |
| [1] | 邓彬, 张宗包, 赵文猛, 罗新航, 吴秋伟. 基于云边协同和图神经网络的电动汽车充电站负荷预测方法[J]. 山东大学学报 (工学版), 2025, 55(5): 62-69. |
| [2] | 李二超, 张智钊. 在线动态订单需求车辆路径规划[J]. 山东大学学报 (工学版), 2024, 54(5): 62-73. |
| [3] | 杨巨成, 魏峰, 林亮, 贾庆祥, 刘建征. 驾驶员疲劳驾驶检测研究综述[J]. 山东大学学报 (工学版), 2024, 54(2): 1-12. |
| [4] | 肖伟, 郑更生, 陈钰佳. 结合自训练模型的命名实体识别方法[J]. 山东大学学报 (工学版), 2024, 54(2): 96-102. |
| [5] | 胡钢, 王乐萌, 卢志宇, 王琴, 徐翔. 基于节点多阶邻居递阶关联贡献度的重要性辨识[J]. 山东大学学报 (工学版), 2024, 54(1): 1-10. |
| [6] | 李家春,李博文,常建波. 一种高效且轻量的RGB单帧人脸反欺诈模型[J]. 山东大学学报 (工学版), 2023, 53(6): 1-7. |
| [7] | 樊禹江,黄欢欢,丁佳雄,廖凯,余滨杉. 基于云模型的老旧小区韧性评价体系[J]. 山东大学学报 (工学版), 2023, 53(5): 1-9, 19. |
| [8] | 李颖,王建坤. 基于监督图正则化和信息融合的轻度认知障碍分类方法[J]. 山东大学学报 (工学版), 2023, 53(4): 65-73. |
| [9] | 余明骏,刁红军,凌兴宏. 基于轨迹掩膜的在线多目标跟踪方法[J]. 山东大学学报 (工学版), 2023, 53(2): 61-69. |
| [10] | 刘行,杨璐,郝凡昌. 基于多特征融合的手指静脉图像检索方法[J]. 山东大学学报 (工学版), 2023, 53(2): 118-126. |
| [11] | 刘方旭,王建,魏本征. 基于多空间注意力的小儿肺炎辅助诊断算法[J]. 山东大学学报 (工学版), 2023, 53(2): 135-142. |
| [12] | 于艺旋,杨耕,耿华. 连续复合运动的多模态层次化关键帧提取方法[J]. 山东大学学报 (工学版), 2023, 53(2): 42-50. |
| [13] | 黄华娟,程前,韦修喜,于楚楚. 融合Jaya高斯变异的自适应乌鸦搜索算法[J]. 山东大学学报 (工学版), 2023, 53(2): 11-22. |
| [14] | 张豪,李子凌,刘通,张大伟,陶建华. 融合社会学因素的模糊贝叶斯网技术预测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 23-33. |
| [15] | 吴艳丽,刘淑薇,何东晓,王晓宝,金弟. 刻画多种潜在关系的泊松-伽马主题模型[J]. 山东大学学报 (工学版), 2023, 53(2): 51-60. |
|