山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 14-21.doi: 10.6040/j.issn.1672-3961.2.2015.065
朱杰1,2,王晶1,刘菲3,高冠东1,段庆1
ZHU Jie1,2, WANG Jing1, LIU Fei3, GAO Guandong1, DUAN Qing1
摘要: 提出基于成分金字塔匹配(component pyramid matching, CPM)的图像表示方法,将图像块按照颜色进行分层,在每一层中通过优化的方式选取几种颜色的图像块作为当前层次图像的前景成分,其余颜色的图形块作为图像的背景成分。前景成分对应对象的某些区域,能够为图像表示提供弱语义信息。然后,利用相似的颜色选择方法,对每一层背景成分进行再次划分,将其分为下一层前景成分和背景成分两部分。最后将这些成分所表示的直方图连接起来作为图像表示用于分类。试验采用Soccer、Flower17和Flower102 3个图像集进行测评,试验结果表明提出的算法能够得到比较好的分类结果。
中图分类号:
| [1] CSURKA G, DANCE CR, FAN LX, et al. Visual categorization with bags of keypoints[C] //Proceedings of the 8th European Conference on Computer Vision. Prague: IEEE, 2004:1-22. [2] CAO Y, WANG C, LI Z, et al. Spatial-bag-of-features[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:3352-3359. [3] MORIOKA N, SATOH S. Building compact local pairwise codebook with joint feature space clustering[C] //Proceedings of the 11th European Conference on Computer Vision. Crete: IEEE, 2010:692-705. [4] SIVIC J, RUSSELL B, EFROS A, et al. Discovering objects and their location in images[C] //Proceedings of the 10th International Conference on Computer Vision. Beijing:IEEE, 2005:370-377. [5] GRAUMAN K, DARRELL T. The pyramid match kernel: Discriminative classification with sets of image features[C] //Proceedings of the 10th International Conference on Computer Vision. Beijing: IEEE, 2005:1458-1465. [6] LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C] //Proceedings of the 19th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York:IEEE, 2006:2169-2178. [7] YANG J, YU K, GONG Y, et al. Linear spatial pyramid matching using sparse coding for image classification [C] //Proceedings of the 22th IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Florida: IEEE, 2009:1794-1801. [8] LI F, CARREIRA J, SMINCHISESCU C. Object recognition as ranking holistic figure-ground hypotheses[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:1712-1719. [9] CHEN Q, SONG Z, HUA Y, et al. Hierarchical matching with side information for image classification[C] //Proceedings of the 25th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Rhode Island: IEEE, 2012:3426-3433. [10] LI L J, SU H, LIM Y, et al. Object bank: an object-level image representation for high-level visual recognition[J].International Journal of Computer Vision, 2014, 107(1):20-39. [11] FERNANDO B, FROMONT E, TUYTELAARS T. Mining mid-level features for image classification[J]. International Journal of Computer Vision, 2014, 108(3): 186-203. [12] LIU J, ZHANG C, TIAN Q, et al. One step beyond bags of features: visual categorization using component[C] //Proceedings of the International Conference on Image Processing. Brussels: IEEE, 2011:2417-2420. [13] LOWE D G. Object recognition from local scale-invariant features[C] //Proceedings of the 7th International Conference on Computer Vision. Kerkyra:IEEE, 1999: 1150-1157. [14] VAN-DE-WEIJER J, SCHMID C, VERBEEK J, et al. Learning color names for real-world applications[J].IEEE Transactions on Image Processing, 2009, 18(7):1512-1523. [15] VAN-DE-WEIJER J, SCHMID C. Coloring local feature extraction[C] //Proceedings of the 9th European Conference on Computer Vision. Graz: IEEE, 2006:334-348. [16] SHAHBAZ-KHAN F, VAN-DE-WEIJER J, VANRELL M.Top-down color attention for object recognition[C] //Proceedings of the 12th International Conference on Computer Vision. Tokyo: IEEE, 2009:979-986. [17] NILSBACK M E, ZISSEMAN A. A visual vocabulary for flower classification[C] //Proceedings of the 19th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006:1447-1454. [18] NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C] //Proceedings of the 6th Indian Conference on Computer Vision, Graphics and Image Processing. Bhubaneswar: IEEE, 2008:722-729. [19] FERNANDO B, FROMONT E, MUSELET D, et al. Discriminative feature fusion for image classification[C] //Proceedings of the 25th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Rhode Island: IEEE, 2012:3434-3441. [20] GEHLER P, NOWOZIN S. On feature combination for multiclass object classification[C] //Proceedings of the 12th International Conference on Computer Vision. Tokyo:IEEE, 221-228. [21] YUAN X T, YAN S. Visual classification with multi-task joint sparse representation[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:3493-3500. [22] YAN F, MIKOLAJCZYK K, BARNARD M, et al. Lp norm multiple kernel fisher discriminant analysis for object and image categorisation[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:3626-3632. [23] KANAN C, COTTRELL G. Robust classification of objects, faces, and flowers using natural image statistics [C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:2472-2479. [24] CHAI Y, LEMPITSKY V, ZISSERMAN A. BiCoS: A Bi-level Co-Segmentation Method for Image Classification[C] //Proceedings of the 13th International Conference on Computer Vision. Barcelona: IEEE, 2011:2579-2586. [25] CHAI Y, RAHTU E, RAHTU E, et al. Tricos: A tri-level class-discriminative co-segmentation method for image classification[C] //Proceedings of the 12th European Conference on Computer Vision. Firenze: IEEE, 2012:794-807. |
| [1] | 白琳,俱通,王浩,雷明珠,潘晓英. 面向不平衡数据的提升均衡集成学习算法[J]. 山东大学学报 (工学版), 2024, 54(4): 59-66. |
| [2] | 陈晓江,杨晓奇,陈广豪,刘伍颖. 混合BERT和宽度学习的低时间复杂度短文本分类[J]. 山东大学学报 (工学版), 2024, 54(4): 51-58. |
| [3] | 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43. |
| [4] | 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11. |
| [5] | 徐金华,罗义凯,李昱燃,李岩. 基于时频分解与深度学习的轨道客流预测[J]. 山东大学学报 (工学版), 2024, 54(2): 60-68. |
| [6] | 马坤,刘筱云,李乐平,纪科,陈贞翔,杨波. 用于意图识别的自适应多标签信息学习模型[J]. 山东大学学报 (工学版), 2024, 54(1): 45-51. |
| [7] | 庄绪彩,孙希滕,张宁,田源,殷敬敬,宋修广. 基于主客观组合赋权评价技术的雷视一体机安装方案优选[J]. 山东大学学报 (工学版), 2023, 53(4): 37-47. |
| [8] | 于泓,杜娟,魏琳,张利. 计及行为特征的市场化用户电量数据拟合方法[J]. 山东大学学报 (工学版), 2023, 53(4): 113-119. |
| [9] | 李颖,王建坤. 基于监督图正则化和信息融合的轻度认知障碍分类方法[J]. 山东大学学报 (工学版), 2023, 53(4): 65-73. |
| [10] | 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92. |
| [11] | 张迪,徐德. 面向移动机器人的室外环境多层次地图构建[J]. 山东大学学报 (工学版), 2023, 53(2): 34-41. |
| [12] | 于艺旋,杨耕,耿华. 连续复合运动的多模态层次化关键帧提取方法[J]. 山东大学学报 (工学版), 2023, 53(2): 42-50. |
| [13] | 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10. |
| [14] | 陈祉如,郭亮,杜艳,董贤光,刘宁宁. 基于改进层次分析法的电能计量系统综合评价[J]. 山东大学学报 (工学版), 2022, 52(6): 167-175. |
| [15] | 王智伟,徐海超,郭相阳,马炯,褚云龙,陈前昌,卢治. 基于卷积神经网络和层次分析的新能源电源调频能力智能预测方法[J]. 山东大学学报 (工学版), 2022, 52(5): 70-76. |
|