您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 14-21.doi: 10.6040/j.issn.1672-3961.2.2015.065

• 机器学习与数据挖掘 • 上一篇    下一篇

基于成分金字塔匹配的对象分类方法

朱杰1,2,王晶1,刘菲3,高冠东1,段庆1   

  1. 1. 中央司法警官学院信息管理系, 河北 保定 071000;2. 北京交通大学计算机与信息技术学院交通数据分析与挖掘北京市重点实验室, 北京 100044;3.中央司法警官学院现代教育技术中心, 河北 保定 071000
  • 收稿日期:2015-05-16 出版日期:2016-04-20 发布日期:2015-05-16
  • 作者简介:朱杰(1982— ),男,河北保定人,博士研究生,主要研究方向为机器学习,机器视觉. E-mail:arthurzhujie@gmail.com
  • 基金资助:
    国家自然科学基金资助项目(61033013,61370129,61375062,61300072,61105056,61402462);国家教育部博士点基金资助项目(20120009110006);中央高校基础科研业务经费北京市科委资助项目(Z131110002813118);河北省教育厅青年基金资助项目(QN2015099);2014年度全国司法行政系统理论研究规划课题资助项目(14GH2022);中国监狱工作协会监狱理论研究课题资助项目(2014YL41);河北省社会科学基金资助项目(HB15TQ013)

Object classification method based on component pyramid matching

ZHU Jie1,2, WANG Jing1, LIU Fei3, GAO Guandong1, DUAN Qing1   

  1. 1. Department of Information Management, The Central Institute for Correctional Police, Baoding 071000, Heibei, China;
    2. Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;
    3. Modern Educational Technology Center, The Central Institute for Correctional Police, Baoding 071000, Heibei, China
  • Received:2015-05-16 Online:2016-04-20 Published:2015-05-16

摘要: 提出基于成分金字塔匹配(component pyramid matching, CPM)的图像表示方法,将图像块按照颜色进行分层,在每一层中通过优化的方式选取几种颜色的图像块作为当前层次图像的前景成分,其余颜色的图形块作为图像的背景成分。前景成分对应对象的某些区域,能够为图像表示提供弱语义信息。然后,利用相似的颜色选择方法,对每一层背景成分进行再次划分,将其分为下一层前景成分和背景成分两部分。最后将这些成分所表示的直方图连接起来作为图像表示用于分类。试验采用Soccer、Flower17和Flower102 3个图像集进行测评,试验结果表明提出的算法能够得到比较好的分类结果。

关键词: 图像表示, 成分金字塔匹配, 颜色, 分类, 层次

Abstract: The image representation method based on component pyramid matching(CPM)was proposed, which separated the patches into different levels based on colors. In each level, some colors were selected by the optimal color selection method, then the patches with these selected colors were considered as the foreground components, and the rest of the patches with other colors were considered as the background components. Usually, the foreground components corresponded to some parts of the objects, which could supply weak semantic information for the image representation. Then, the background components were split into the foreground and background components in the next level based on the similar color selection method. The final representation of an image was obtained by concatenating the component histograms in each level. Classification results were presented on Soccer, Flower17 and Flower102 datasets, and the experiments showed that CMP could obtain satisfactory results in these datasets.

Key words: level, image representation, classification, component pyramid matching, color

中图分类号: 

  • TP301
[1] CSURKA G, DANCE CR, FAN LX, et al. Visual categorization with bags of keypoints[C] //Proceedings of the 8th European Conference on Computer Vision. Prague: IEEE, 2004:1-22.
[2] CAO Y, WANG C, LI Z, et al. Spatial-bag-of-features[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:3352-3359.
[3] MORIOKA N, SATOH S. Building compact local pairwise codebook with joint feature space clustering[C] //Proceedings of the 11th European Conference on Computer Vision. Crete: IEEE, 2010:692-705.
[4] SIVIC J, RUSSELL B, EFROS A, et al. Discovering objects and their location in images[C] //Proceedings of the 10th International Conference on Computer Vision. Beijing:IEEE, 2005:370-377.
[5] GRAUMAN K, DARRELL T. The pyramid match kernel: Discriminative classification with sets of image features[C] //Proceedings of the 10th International Conference on Computer Vision. Beijing: IEEE, 2005:1458-1465.
[6] LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C] //Proceedings of the 19th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York:IEEE, 2006:2169-2178.
[7] YANG J, YU K, GONG Y, et al. Linear spatial pyramid matching using sparse coding for image classification [C] //Proceedings of the 22th IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Florida: IEEE, 2009:1794-1801.
[8] LI F, CARREIRA J, SMINCHISESCU C. Object recognition as ranking holistic figure-ground hypotheses[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:1712-1719.
[9] CHEN Q, SONG Z, HUA Y, et al. Hierarchical matching with side information for image classification[C] //Proceedings of the 25th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Rhode Island: IEEE, 2012:3426-3433.
[10] LI L J, SU H, LIM Y, et al. Object bank: an object-level image representation for high-level visual recognition[J].International Journal of Computer Vision, 2014, 107(1):20-39.
[11] FERNANDO B, FROMONT E, TUYTELAARS T. Mining mid-level features for image classification[J]. International Journal of Computer Vision, 2014, 108(3): 186-203.
[12] LIU J, ZHANG C, TIAN Q, et al. One step beyond bags of features: visual categorization using component[C] //Proceedings of the International Conference on Image Processing. Brussels: IEEE, 2011:2417-2420.
[13] LOWE D G. Object recognition from local scale-invariant features[C] //Proceedings of the 7th International Conference on Computer Vision. Kerkyra:IEEE, 1999: 1150-1157.
[14] VAN-DE-WEIJER J, SCHMID C, VERBEEK J, et al. Learning color names for real-world applications[J].IEEE Transactions on Image Processing, 2009, 18(7):1512-1523.
[15] VAN-DE-WEIJER J, SCHMID C. Coloring local feature extraction[C] //Proceedings of the 9th European Conference on Computer Vision. Graz: IEEE, 2006:334-348.
[16] SHAHBAZ-KHAN F, VAN-DE-WEIJER J, VANRELL M.Top-down color attention for object recognition[C] //Proceedings of the 12th International Conference on Computer Vision. Tokyo: IEEE, 2009:979-986.
[17] NILSBACK M E, ZISSEMAN A. A visual vocabulary for flower classification[C] //Proceedings of the 19th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006:1447-1454.
[18] NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C] //Proceedings of the 6th Indian Conference on Computer Vision, Graphics and Image Processing. Bhubaneswar: IEEE, 2008:722-729.
[19] FERNANDO B, FROMONT E, MUSELET D, et al. Discriminative feature fusion for image classification[C] //Proceedings of the 25th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Rhode Island: IEEE, 2012:3434-3441.
[20] GEHLER P, NOWOZIN S. On feature combination for multiclass object classification[C] //Proceedings of the 12th International Conference on Computer Vision. Tokyo:IEEE, 221-228.
[21] YUAN X T, YAN S. Visual classification with multi-task joint sparse representation[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:3493-3500.
[22] YAN F, MIKOLAJCZYK K, BARNARD M, et al. Lp norm multiple kernel fisher discriminant analysis for object and image categorisation[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:3626-3632.
[23] KANAN C, COTTRELL G. Robust classification of objects, faces, and flowers using natural image statistics [C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:2472-2479.
[24] CHAI Y, LEMPITSKY V, ZISSERMAN A. BiCoS: A Bi-level Co-Segmentation Method for Image Classification[C] //Proceedings of the 13th International Conference on Computer Vision. Barcelona: IEEE, 2011:2579-2586.
[25] CHAI Y, RAHTU E, RAHTU E, et al. Tricos: A tri-level class-discriminative co-segmentation method for image classification[C] //Proceedings of the 12th European Conference on Computer Vision. Firenze: IEEE, 2012:794-807.
[1] 白琳,俱通,王浩,雷明珠,潘晓英. 面向不平衡数据的提升均衡集成学习算法[J]. 山东大学学报 (工学版), 2024, 54(4): 59-66.
[2] 陈晓江,杨晓奇,陈广豪,刘伍颖. 混合BERT和宽度学习的低时间复杂度短文本分类[J]. 山东大学学报 (工学版), 2024, 54(4): 51-58.
[3] 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43.
[4] 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11.
[5] 徐金华,罗义凯,李昱燃,李岩. 基于时频分解与深度学习的轨道客流预测[J]. 山东大学学报 (工学版), 2024, 54(2): 60-68.
[6] 马坤,刘筱云,李乐平,纪科,陈贞翔,杨波. 用于意图识别的自适应多标签信息学习模型[J]. 山东大学学报 (工学版), 2024, 54(1): 45-51.
[7] 庄绪彩,孙希滕,张宁,田源,殷敬敬,宋修广. 基于主客观组合赋权评价技术的雷视一体机安装方案优选[J]. 山东大学学报 (工学版), 2023, 53(4): 37-47.
[8] 于泓,杜娟,魏琳,张利. 计及行为特征的市场化用户电量数据拟合方法[J]. 山东大学学报 (工学版), 2023, 53(4): 113-119.
[9] 李颖,王建坤. 基于监督图正则化和信息融合的轻度认知障碍分类方法[J]. 山东大学学报 (工学版), 2023, 53(4): 65-73.
[10] 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92.
[11] 张迪,徐德. 面向移动机器人的室外环境多层次地图构建[J]. 山东大学学报 (工学版), 2023, 53(2): 34-41.
[12] 于艺旋,杨耕,耿华. 连续复合运动的多模态层次化关键帧提取方法[J]. 山东大学学报 (工学版), 2023, 53(2): 42-50.
[13] 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10.
[14] 陈祉如,郭亮,杜艳,董贤光,刘宁宁. 基于改进层次分析法的电能计量系统综合评价[J]. 山东大学学报 (工学版), 2022, 52(6): 167-175.
[15] 王智伟,徐海超,郭相阳,马炯,褚云龙,陈前昌,卢治. 基于卷积神经网络和层次分析的新能源电源调频能力智能预测方法[J]. 山东大学学报 (工学版), 2022, 52(5): 70-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[3] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[4] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[5] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[6] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[7] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[8] 胡天亮,李鹏,张承瑞,左毅 . 基于VHDL的正交编码脉冲电路解码计数器设计[J]. 山东大学学报(工学版), 2008, 38(3): 10 -13 .
[9] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[10] 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22 -26 .