山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (6): 27-33.
周咏梅1,杨佳能2,阳爱民2
ZHOU Yong-mei1, YANG Jia-neng2, YANG Ai-min1
摘要:
提出了构建基于HowNet和SentiWordNet的中文情感词典方法。将词语自动分解为多个义元后计算其情感倾向强度,并且使用词典校对方法对词语情感倾向强度进行优化。将所构建词典应用到文本情感分析任务中,使用支持向量机构建文本情感分类器进行实验。实验结果表明,该词典优于一般极性情感词典,为情感分析研究提供了有效的词典资源。
| [1] | 亓晓燕,刘恒杰,侯秋华,刘啸宇,谭延超,王连成. 融合LSTM和SVM的钢铁企业电力负荷短期预测[J]. 山东大学学报 (工学版), 2021, 51(4): 91-98. |
| [2] | 杨修远,彭韬,杨亮,林鸿飞. 基于知识蒸馏的自适应多领域情感分析[J]. 山东大学学报 (工学版), 2021, 51(3): 15-21. |
| [3] | 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13. |
| [4] | 马昕,王雪. 基于Laplacian支持向量机和序列信息的microRNA-结合残基预测[J]. 山东大学学报 (工学版), 2020, 50(2): 76-82. |
| [5] | 蔡国永, 林强, 任凯琪. 基于域对抗网络和BERT的跨领域文本情感分析[J]. 山东大学学报 (工学版), 2020, 50(1): 1-7. |
| [6] | 梁志祥,刘晓明,牟颖,刘玉田. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报 (工学版), 2019, 49(5): 24-28. |
| [7] | 高明霞,李经纬. 基于word2vec词模型的中文短文本分类方法[J]. 山东大学学报 (工学版), 2019, 49(2): 34-41. |
| [8] | 严云洋,张慧珍,刘以安,高尚兵. 基于GMM与三维LBP纹理的视频火焰检测[J]. 山东大学学报 (工学版), 2019, 49(1): 1-9. |
| [9] | 周荣翔,贾修一. 中文反语识别特征分析[J]. 山东大学学报 (工学版), 2019, 49(1): 41-46. |
| [10] | 钱春琳,张兴芳,孙丽华. 基于在线评论情感分析的改进协同过滤推荐模型[J]. 山东大学学报 (工学版), 2019, 49(1): 47-54. |
| [11] | 李兴,侯振杰,梁久祯,常兴治. 基于线性加速度的多节点人体行为识别[J]. 山东大学学报 (工学版), 2018, 48(6): 56-66. |
| [12] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
| [13] | 林江豪,周咏梅,阳爱民,陈锦. 基于词向量的领域情感词典构建[J]. 山东大学学报(工学版), 2018, 48(3): 40-47. |
| [14] | 沈冀,马志强,李图雅,张力. 面向短文本情感分析的词扩充LDA模型[J]. 山东大学学报(工学版), 2018, 48(3): 120-126. |
| [15] | 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12. |
|