您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (5): 91-95.

• 机器学习与数据挖掘 • 上一篇    下一篇

基于粗糙集理论的瓦斯灾害信息特征提取技术

李慧1,2,胡云1,3,李存华1   

  1. 1.淮海工学院计算机工程学院, 江苏 连云港 222005; 2.中国矿业大学信电学院,江苏 徐州 221008;3.南京大学信息工程学院, 江苏 南京 110004
  • 收稿日期:2012-05-06 出版日期:2012-10-20 发布日期:2012-05-06
  • 作者简介:李慧(1979- ),女,江苏连云港人,讲师,硕士研究生,主要研究方向为人工智能, 数据挖掘与信息检索.E-mail:shufanzs@126.com
  • 基金资助:
    江苏省自然科学基金资助项目(11KJB520001);江苏省海洋资源研究院科技开放基金资助项目(JSIMR11B12)

The technique of gas disaster information feature extraction based on rough set theory

LI Hui1,2, HU Yun1,3, LI Cun-hua1   

  1. 1. Department of Computer Science, Huaihai Institute of Technology, Lianyungang 222005, China; 2. School of Information & Electrical Engineering, China University of Mining & Technology, Xuzhou 221008, China; 3. Department of Information Engineering, Nanjing University, Nanjing 110004, China
  • Received:2012-05-06 Online:2012-10-20 Published:2012-05-06

摘要: 为了准确预测煤与瓦斯突出的危险性,建立有效的煤矿瓦斯预警支持系统,针对煤矿瓦斯灾害的特点,本研究提出了一种新颖的基于粗糙集的瓦斯灾害特征提取算法。该算法首先利用维数化简技术对瓦斯灾害信息矩阵进行优化,并在此基础上,利用信息论中熵的概念和最大熵原理构建瓦斯灾害信息特征提取模型。通过实际应用,证实了粗糙集理论在瓦斯灾害特征提取与瓦斯灾害预测中的有效性和实用性。

关键词: 粗糙集理论, 煤矿瓦斯, 特征提取, 信息熵

Abstract: In order to accurately predict coal and gas outburst danger and to establish an effective earlywarming support system of gas in coal mine, a high efficient gas disaster feature extraction algorithm based on rough set was proposed in view of the characteristics of coal mine gas disaster. The algorithm first refined the gas disaster information matrix by using dimensionality reduction, then the entropy and max entropy in the concept of rough set theory were used to establish data mining model of gas disaster prediction. The effectiveness and practicality of rough set theory in the prediction of gas disaster and feature extraction was confirmed through practical application.

Key words: rough set theory, coal mine gas, feature extraction, information entropy

中图分类号: 

  • TP274
[1] 那绪博,张莹,李沐阳,陈元畅,华云鹏. 基于ODCG的网约车需求预测模型[J]. 山东大学学报 (工学版), 2023, 53(5): 48-56.
[2] 李颖,王建坤. 基于监督图正则化和信息融合的轻度认知障碍分类方法[J]. 山东大学学报 (工学版), 2023, 53(4): 65-73.
[3] 郭茂林,包崇明,周丽华,丁涛,孔兵. 基于TOPSIS的异质网络影响力最大化[J]. 山东大学学报 (工学版), 2022, 52(2): 31-40.
[4] 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49.
[5] 曹春红,段鸿轩,曹玲,张乐乐,胡凯,肖芬. 基于多级特征级联的遥感图像实时语义分割[J]. 山东大学学报 (工学版), 2021, 51(2): 19-25.
[6] 杨煦,陈辉,林游思,屠长河. 飞行蝙蝠标记自动提取与追踪算法[J]. 山东大学学报 (工学版), 2019, 49(2): 67-73.
[7] 范君,业巧林,业宁. 基于改进的有监督无参局部保持投影算法的人脸识别[J]. 山东大学学报 (工学版), 2019, 49(1): 10-16.
[8] 王国新,陈凤东,刘国栋. 基于彩色伪随机编码结构光特征提取方法[J]. 山东大学学报 (工学版), 2018, 48(5): 55-60.
[9] 叶子云,杨金锋. 一种基于加权图模型的手指静脉识别方法[J]. 山东大学学报(工学版), 2018, 48(3): 103-109.
[10] 张振月,李斐,江铭炎. 基于低秩表示投影的无监督人脸特征提取[J]. 山东大学学报(工学版), 2018, 48(1): 15-20.
[11] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
[12] 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95.
[13] 郭超,杨燕,江永全,宋祎. 基于多视图分类集成的高铁工况识别[J]. 山东大学学报(工学版), 2017, 47(1): 7-14.
[14] 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20.
[15] 钟智彦,文志强, 张潇云,叶德刚. 基于半色调图像的邻域相似性描述子方法[J]. 山东大学学报(工学版), 2016, 46(3): 58-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[4] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[5] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[6] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[7] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[8] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[9] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[10] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .