您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (2): 23-29.

• 机器学习与数据挖掘 • 上一篇    下一篇

结肠癌基因表达谱的特征选取研究

潘冬寅,朱发,徐昇,业宁*   

  1. 南京林业大学信息科学与技术学院, 江苏 南京 210037
  • 收稿日期:2011-04-15 出版日期:2012-04-20 发布日期:2011-04-15
  • 通讯作者: 业宁(1967- ),男,江苏南京人,教授,博士,主要研究方向为数据挖掘,算法分析. Email:yining@nifu.edu.cn E-mail:yining@nifu.edu.cn
  • 作者简介:潘冬寅(1986- ),女,江苏盐城人,硕士研究生,主要研究方向为数据挖掘,模式识别.Email:winbutterfly2008@yahoo.com.cn
  • 基金资助:

    国家自然科学基金资助项目(30671639);江苏省自然科学基金资助项目(BK2009393);江苏省青蓝工程学术带头人资助项目;江苏省科技创新工程资助项目(CXLX11-0525)

Feature selection of gene expression profiles of colon cancer

PAN Dong-yin, ZHU Fa, XU Sheng, YE Ning*   

  1. College of Information Technology, Nanjing Forestry University, Nanjing 210037, China
  • Received:2011-04-15 Online:2012-04-20 Published:2011-04-15

摘要:

为了找到与结肠癌相关的基因,提高结肠癌样本的识别率,提出了基于Chernoff距离的浮动顺序搜索算法(sequential floating search method, SFSM)。通过对结肠癌基因表达谱数据集的分析,对每个基因进行评价和筛选;对筛选后的基因子集利用SFSM算法进行搜索,并以Chernoff距离作为其评估函数,生成若干候选特征基因子集;利用支持向量机(support vector machine,SVM)、K-近邻(Knearest neighbor,KNN)和径向基(radical basis function,RBF)神经网络分类器来检验候选特征基因子集的分类效果。实验结果表明,利用SFSM及评估函数Chernoff距离发现在参数β=025时能找到最佳的特征基因组合,该组合能以很高的正确率识别结肠癌样本。

关键词: 特征选择, Chernoff距离, 浮动顺序搜索, 支持向量机, K-近邻, 径向基神经网络

Abstract:

 In order to improve the recognition rate of colon cancer sample by selecting the related genes, sequential floating search method(SFSM) basing on Chernoff distance was proposed. Every gene was evaluated and selected by analyzing the data set of the colon cancer gene expression profiles. Some candidate feature gene subsets were obtained by searching the selected gene subset with the method of SFSM whose evaluation function was Chernoff distance. Three different classifies, support vector machines, K-nearest neighbors, and RBF neural networks, were used to validate the classified efficiency. The experimental results showed that when β=025, the feature gene combination obtained by SFSM with Chernoff distance as its evaluation function was optimal, and colon cancer sample could be recognized best.

Key words: feature selection, Chernoff distance, sequential floating search method(SFSM), support vector machine(SVM), K-nearest neighbor(KNN), radical basis function neural network (RBFNN)

[1] 唐杰烽,张佳,龙锦益. 基于全局冗余最小的快速多标签特征选择方法[J]. 山东大学学报 (工学版), 2025, 55(6): 21-34.
[2] 吴正健,吾尔尼沙·买买提,杨耀威,阿力木江·艾沙,库尔班·吾布力. 基于DRCoALTP的印刷体文档图像多文种识别方法[J]. 山东大学学报 (工学版), 2025, 55(1): 51-57.
[3] 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10.
[4] 许传臻,袭肖明,李维翠,孙仪,杨璐. 基于自适应多分辨率特征学习的CNV分型网络[J]. 山东大学学报 (工学版), 2022, 52(4): 69-75.
[5] 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44.
[6] 亓晓燕,刘恒杰,侯秋华,刘啸宇,谭延超,王连成. 融合LSTM和SVM的钢铁企业电力负荷短期预测[J]. 山东大学学报 (工学版), 2021, 51(4): 91-98.
[7] 彭岩,冯婷婷,王洁. 基于集成学习的O3的质量浓度预测模型[J]. 山东大学学报 (工学版), 2020, 50(4): 1-7.
[8] 马昕,王雪. 基于Laplacian支持向量机和序列信息的microRNA-结合残基预测[J]. 山东大学学报 (工学版), 2020, 50(2): 76-82.
[9] 梁志祥,刘晓明,牟颖,刘玉田. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报 (工学版), 2019, 49(5): 24-28.
[10] 汪嘉晨, 唐向红, 陆见光. 轴承故障诊断中特征选取技术[J]. 山东大学学报 (工学版), 2019, 49(2): 80-87.
[11] 严云洋,张慧珍,刘以安,高尚兵. 基于GMM与三维LBP纹理的视频火焰检测[J]. 山东大学学报 (工学版), 2019, 49(1): 1-9.
[12] 陈红,杨小飞,万青,马盈仓. 基于相关熵和流形学习的多标签特征选择算法[J]. 山东大学学报 (工学版), 2018, 48(6): 27-36.
[13] 李兴,侯振杰,梁久祯,常兴治. 基于线性加速度的多节点人体行为识别[J]. 山东大学学报 (工学版), 2018, 48(6): 56-66.
[14] 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报 (工学版), 2018, 48(5): 32-37.
[15] 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[2] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[3] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[6] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[7] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[8] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[9] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .
[10] 孙玉利,李法德,左敦稳,戚美 . 直立分室式流体连续通电加热系统的升温特性[J]. 山东大学学报(工学版), 2006, 36(6): 19 -23 .