您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2026, Vol. 56 ›› Issue (1): 89-96.doi: 10.6040/j.issn.1672-3961.0.2024.279

• 土木工程 • 上一篇    

陶瓷抛光渣与硅灰对碱-硅酸反应的抑制作用

高鹏1,2,3,倪庄1*,周浩然1,王义猛1,王珏1   

  1. 1.内蒙古科技大学土木工程学院, 内蒙古 包头 014010;2.内蒙古自治区建筑结构防灾减灾工程技术研究中心(内蒙古科技大学), 内蒙古 包头 014010;3.内蒙古自治区土木工程安全与耐久性重点实验室(内蒙古科技大学), 内蒙古 包头 014010
  • 发布日期:2026-02-03
  • 作者简介:高鹏(1979— ),男,内蒙古包头人,副教授,硕士生导师,博士,主要研究方向为混凝土耐久性. E-mail:gaop182@163.com. *通信作者简介:倪庄(2000— ),男,江苏徐州人,硕士研究生,主要研究方向为固废混凝土的耐久性. E-mail:2484334468@qq.com
  • 基金资助:
    国家自然科学基金资助项目(52268044);内蒙古自治区自然科学基金资助项目(2021LHMS05019)

The inhibition of alkali-silica reaction by ceramic polishing waste and silica fume

GAO Peng1,2,3, NI Zhuang1*, ZHOU Haoran1, WANG Yimeng1, WANG Jue1   

  1. GAO Peng1, 2, 3, NI Zhuang1*, ZHOU Haoran1, WANG Yimeng1, WANG Jue1(1. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China;
    2. Inner Mongolia Autonomous Region Building Structure Disaster Prevention and Mitigation Engineering Technology Research Center, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China;
    3. Inner Mongolia Key Laboratory of Safety and Durability for Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
  • Published:2026-02-03

摘要: 为探究陶瓷抛光渣(ceramic polishing waste, CPW)和硅灰(silica fume, SF)对碱-硅酸反应(alkali-silica reaction, ASR)诱发有害膨胀的影响,采用不同质量的CPW和SF替代等质量水泥进行快速砂浆棒碱骨料反应试验,并制备与砂浆棒相同质量分数的混凝土试件进行强度测试。采用X射线衍射、扫描电镜和能谱分析等方法对砂浆棒中水化产物、微观结构和凝胶物质的元素组成进行分析,明确ASR抑制机理。结果表明,抛光渣的膨胀抑制效果随质量分数的增加而增强,30%的抛光渣可以有效抑制ASR膨胀。二元复掺可以提高ASR抑制作用,但当CPW和SF的质量分数和超过30%时可能会造成混凝土强度的损失;陶瓷抛光渣与硅灰之间存在良好的协同作用,抛光渣中的Al2O3消耗碱离子并促进多种非膨胀性架状铝硅酸盐矿物的形成,其与硅灰的火山灰效应可增强凝胶的缚碱能力,进一步降低碱离子对ASR膨胀的危害。

关键词: 碱-硅酸反应, 陶瓷抛光渣, 硅灰, 抑制机理, 铝硅酸盐矿物

Abstract: In order to investigate the effects of ceramic polishing waste(CPW)and silica fume(SF)on the expansion of alkali-silica reaction(ASR), accelerated mortar bar tests were carried out with different proportions of CPW and SF instead of cement, and the strength of concrete specimens with the same replacement rate was tested. The hydration product, microstructure, and elemental composition in the mortar bars were analyzed using X-ray diffraction(XRD), scanning electron microscope(SEM), and energy dispersive spectrometer(EDS)to elucidate the ASR inhibition mechanism. The results showed that the effect of CPW on inhibiting ASR swelling increased with the increase of content, and 30% CPW could inhibit ASR expansion. A binary blend of CPW and SF further enhanced the inhibition of ASR; However, total replacement levels exceeding 30% may reduce the strength of concrete. In addition, there was a synergistic effect between CPW and SF, in which Al2O3 in CPW consumed alkali ions and promotes the formation of non-expansive aluminosilicate minerals. The pozzolanic effects of CPW and SF increased the alkali-binding capacity of the gel, further mitigating ASR expansion.

Key words: alkali-silica reaction, ceramic polishing waste, silica fume, inhibition mechanism, aluminosilicate minerals

中图分类号: 

  • TU528
[1] GHOLIZADEH-VAYGHAN A, RAJABIPOUR F. The influence of alkali-silica reaction(ASR)gel composition on its hydrophilic properties and free swelling in contact with water vapor[J]. Cement and Concrete Research, 2017, 94:49-58.
[2] GAO P, WANG Y B, WANG Y M, et al. Influence of waste tire rubber powder, polypropylene fiber and their binary blends on mitigating alkali-silica reaction[J]. Journal of Building Engineering, 2023, 67: 105951.
[3] WANG Y B, GAO P, SU H Z, et al. Failure criteria and microstructure evolution mechanism of the alkali-silica reaction of concrete[J]. Reviews on Advanced Materials Science, 2023, 62: 20230102.
[4] LEI J W, LAW W W, YANG E H. Effect of calcium hydroxide on the alkali-silica reaction of alkali-activated slag mortars activated by sodium hydroxide[J]. Construction and Building Materials, 2021, 272: 121868.
[5] HAY R, OSTERTAG C P. New insights into the role of fly ash in mitigating alkali-silica reaction(ASR)in concrete[J].Cement and Concrete Research,2021, 144: 106440.
[6] SHAFAATIAN S M H, AKHAVAN A, MARAGHECHI H, et al. How does fly ash mitigate alkali-silica reaction(ASR)in accelerated mortar bar test(ASTM C1567)?[J]. Cement and Concrete Composites, 2013, 37: 143-153.
[7] THOMAS M. The effect of supplementary cementing materials on alkali-silica reaction: a review[J]. Cement and Concrete Research, 2011, 41(12): 1224-1231.
[8] WANG W Q, ROBERTS J, RANGARAJU P. Pozzolanic reactivity of high-alkali supplementary cementitious materials and its impact on mitigation of alkali-silica reaction[J]. Transportation Research Record: Journal of the Transportation Research Board, 2024, 2678(11): 2110-2126.
[9] CHEN Y L, XIONG X F, SHI S, et al. Effect of glass powder on alkali-silica reaction mitigation for tunnel waste rock slag in concrete[J]. Journal of Building Engineering, 2024, 98: 111024.
[10] SONG Q, BAO J W, XUE S B, et al. Study on the recycling of ceramic polishing slag in autoclaved aerated foam concrete by response surface methodology[J]. Journal of Building Engineering, 2022, 56: 104827.
[11] TIAN B, MA W N, LI X G, et al. Effect of ceramic polishing waste on the properties of alkali-activated slag pastes: shrinkage, hydration and mechanical property[J]. Journal of Building Engineering, 2023, 63: 105448.
[12] 孙晓玮, 邵佳慧, 王巧梭, 等. 浅谈废陶瓷的资源化再利用研究[J]. 佛山陶瓷, 2022, 32(11): 45-47. SUN Xiaowei, SHAO Jiahui, WANG Qiaosuo, et al. Talking about the research on the recycling of waste ceramics[J]. Foshan Ceramics, 2022, 32(11): 45-47.
[13] LI L G, ZHUO Z Y, ZHU J, et al. Adding ceramic polishing waste as paste substitute to improve sulphate and shrinkage resistances of mortar[J]. Powder Technology, 2020, 362: 149-156.
[14] PACHECO-TORGAL F, JALALI S. Retraction note: compressive strength and durability properties of ceramic wastes based concrete[J]. Materials and Structures, 2021, 54(4): 153.
[15] KANNAN D M, ABOUBAKR S H, EL-DIEB A S, et al. High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement[J]. Construction and Building Materials, 2017, 144: 35-41.
[16] PATEL H, ARORA N K, VANIYA S R. Use of ceramic waste powder in cement concrete[J]. International Journal for Innovative Research in Science & Technology, 2015, 2(1): 91-97.
[17] 中华人民共和国水利部. 水工混凝土试验规程: GB/T SL352—2020[S]. 北京: 中国水利水电出版社, 2020.
[18] 杨长辉, 蒲心诚, 吴芳. 碱矿渣水泥砂浆的碱集料反应膨胀研究[J]. 硅酸盐学报, 1999, 27(6): 651-657. YANG Changhui, PU Xincheng, WU Fang. The studies on alkali-aggregate reaction of alkali-activated slag cement mortars[J]. Journal of the Chinese Ceramic Society, 1999, 27(6): 651-657.
[19] TAPAS M J, THOMAS P, VESSALAS K, et al. Comparative study of the efficacy of fly ash and reactive aggregate powders in mitigating alkali-silica reaction[J]. Journal of Building Engineering, 2023, 63: 105571.
[20] SHI Z G, SHI C J, ZHANG J, et al. Alkali-silica reaction in waterglass-activated slag mortars incorporating fly ash and metakaolin[J]. Cement and Concrete Research, 2018, 108: 10-19.
[21] 中华人民共和国住房和城乡建设部,国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.
[22] 魏风艳, 吕忆农, 兰祥辉, 等. 低Ca/Si比的C—S—H凝胶产物在抑制AAR中的作用[J]. 南京工业大学学报(自然科学版), 2004, 26(4): 98-102. WEI Fengyan, L(¨overU)Yinong, LAN Xianghui, et al. Effect of low Ca/Si ratio of C—S—H gels on restraining expansion due to alkali-aggregate reaction[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2004, 26(4): 98-102.
[23] CHENG Y H, HUANG F, LI G L, et al. Test research on effects of ceramic polishing powder on carbonation and sulphate-corrosion resistance of concrete[J]. Construction and Building Materials, 2014, 55: 440-446.
[24] H(¨overU)NGER K J. The contribution of quartz and the role of aluminum for understanding the AAR with greywacke[J]. Cement and Concrete Research, 2007, 37(8): 1193-1205.
[25] 龚青南, 王德辉. 不同离子对混凝土碱硅酸反应影响的研究进展[J]. 材料导报, 2024, 38(2): 89-103. GONG Qingnan, WANG Dehui. Research progress on the effects of different ions on alkali-silica reaction of concrete[J]. Materials Reports, 2024, 38(2): 89-103.
[26] 武汉地质学院矿物教研室. 结晶学及矿物学:上册[M]. 北京: 地质出版社, 1979: 91-95.
[27] 魏丽丽, 胡明玉, 郑江, 等. 陶瓷抛光渣对水泥基材料碱集料反应的影响[J]. 硅酸盐学报, 2018, 46(11): 1568-1574. WEI Lili, HU Mingyu, ZHENG Jiang, et al. Effect of ceramic polishing powder on alkali-aggregate reaction of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2018, 46(11): 1568-1574.
[28] LOTHENBACH B, BERNARD E, MÄDER U. Zeolite formation in the presence of cement hydrates and albite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2017, 99: 77-94.
[29] 董伟, 周梦虎, 王雪松, 等. 碳化-冻融作用对风积沙混凝土氯离子传输的影响[J].山东大学学报(工学版), 2024, 54(1): 123-130. DONG Wei, ZHOU Menghu, WANG Xuesong, et al. Effect of carbonation freeze-thaw on chloride ion transport in aeolian sand concrete[J]. Journal of Shandong University( Engineering Science), 2024, 54(1): 123-130.
[1] 张露晨,李树忱,李术才,廖麒凯. 硅灰粉煤灰对喷射混凝土性能影响[J]. 山东大学学报(工学版), 2016, 46(5): 102-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!