山东大学学报 (工学版) ›› 2026, Vol. 56 ›› Issue (1): 49-62.doi: 10.6040/j.issn.1672-3961.0.2025.003
• 机器学习与数据挖掘 • 上一篇
柳宗元1,2,李小光1,2*,侯宇翔1,2,丁昊1,2
LIU Zongyuan1,2, LI Xiaoguang1,2*, HOU Yuxiang1,2, DING Hao1,2
摘要: 针对浣熊优化算法(coati optimization algorithm, COA)全局搜索能力不足、易陷入局部最优和收敛速度慢的问题,提出一种基于非线性自适应的改进浣熊优化算法(improved coati optimization algorithm based on nonlinear adaptation, NACOA)。采用Logistic-Tent映射初始化浣熊种群,提升算法初始搜索空间覆盖度,生成更加分散且高质量的初始解;引入莱维飞行策略,利用其长跳跃特性,增强算法的全局搜索能力,有效避免算法陷入局部最优;利用非线性递减惯性权重提高种群的适应性与搜索效率,平衡全局搜索和局部搜索能力,并通过黄金正弦策略提高种群收敛精度。在基准测试函数上进行对比仿真试验,结果表明NACOA具有更好的收敛速度和寻优精度。将NACOA应用到工程问题设计中,证明了该算法的有效性和实用性。
中图分类号:
| [1] REZAEI F, SAFAVI H R, ABD ELAZIZ M, et al. GMO: geometric mean optimizer for solving engineering problems[J]. Soft Computing, 2023, 27(15): 10571-10606. [2] SHEHADEH H A. Chernobyl disaster optimizer(CDO): a novel meta-heuristic method for global optimization[J]. Neural Computing and Applications, 2023, 35(15): 10733-10749. [3] ZOLFI K. Gold rush optimizer: a new population-based metaheuristic algorithm[J]. Operations Research and Decisions, 2023, 33(1): 113-150. [4] MIRRASHID M, NADERPOUR H. Incomprehensible but intelligible-in-time logics: theory and optimization algorithm[J]. Knowledge-Based Systems, 2023, 264: 110305. [5] DENG L Y, LIU S Y. Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design[J]. Expert Systems with Applications, 2023, 225: 120069. [6] DEHGHANI M, MONTAZERI Z, TROJOVSKÁ E, et al. Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2023, 259: 110011. [7] 苏仁斌, 熊卫红, 刘先珊, 等. 基于新型元启发式BP神经网络的500 kV覆冰输电线路力学响应预测研究[J]. 应用基础与工程科学学报, 2024, 32(1): 100-122. SU Renbin, XIONG Weihong, LIU Xianshan, et al. Study on BP neural network based on a new metaheuristic optimization algorithm and prediction of mechanical response for 500 kV UHV transmission lines considering icing[J]. Journal of Basic Science and Engineering Sciences, 2024, 32(1): 100-122. [8] ABDULLAH MENGASH A, ALQAHTANI H, MARAY M, et al. Coati optimization-based energy efficient routing protocol for unmanned aerial vehicle communication[J]. Computers, Materials & Continua, 2023, 75(3): 4805-4820. [9] MEKHAMER A S, HASANIEN H M, ALHARBI M, et al. Coati optimization algorithm-based optimal frequency control of power systems including storage devices and electric vehicles[J]. Journal of Energy Storage, 2024, 93: 112367. [10] HUAN J J, HE Y L, SUN K, et al. Capacity planning for wind, solar, thermal and energy storage in power generation systems considering coupled electricity-carbon markets[J]. IET Generation, Transmission & Distri-bution, 2024, 18(24): 4090-4104. [11] LEI W, WANG G, WAN B Q, et al. High voltage shunt reactor acoustic signal denoising based on the combination of VMD parameters optimized by coati optimization algorithm and wavelet threshold[J]. Measurement, 2024, 224: 113854. [12] 秦敏敏, 刘立芳, 齐小刚. 面向维修资源分配调度的遗传-长鼻浣熊混合优化算法[J]. 智能系统学报, 2023, 18(6): 1322-1335. QIN Minmin, LIU Lifang, QI Xiaogang. Hybrid genetic long-nosed raccoon optimization algorithm for mainte-nance resource allocation and scheduling[J]. CAAI Transactions on Intelligent Systems, 2023, 18(6): 1322-1335. [13] 杨世源. 基于自适应克里金模型的混合不确定性设计优化方法研究[D]. 成都: 电子科技大学, 2024: 14-15. YANG Shiyuan. Design andoptimization method based on adaptive Kriging model under mixed uncertainty[D]. Chengdu: University of Electronic Science and Technology of China, 2024: 14-15. [14] THIRUMOORTHY K, JEROLD JOHN BRITTO J. A two-stage feature selection approach using hybrid quasi-opposition self-adaptive coati optimization algorithm for breast cancer classification[J]. Applied Soft Compu-ting, 2023, 146: 110704. [15] WANG C, LIN H, YANG M, et al. A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm[J]. Chaos, Solitons & Fractals, 2024, 187: 115442. [16] RAVINDRAN N, ANTO KUMAR R P. SECOA: serial exponential coati optimization algorithm for MANET routing with link lifetime prediction[J]. Engineering Science and Technology, an International Journal, 2024, 59: 101869. [17] ARORA S, ANAND P. Chaotic grasshopper optimi-zation algorithm for global optimization[J]. Neural Computing and Applications, 2019, 31(8): 4385-4405. [18] 李鹏, 丁倩雯. 基于麻雀算法优化的OSTU分割算法[J]. 电子测量技术, 2021, 44(19): 148-154. LI Peng, DING Qianwen. OSTU segmentation algorithm based on sparrow algorithm optimization[J]. Electronic Measurement Technology, 2021, 44(19): 148-154. [19] 蔡娟. 混沌映射与精英高斯扰动的非线性灰狼优化算法[J]. 计算机工程与设计, 2022, 43(1): 186-195. CAI Juan. Non-linear gray wolf optimization algorithm based on chaotic Tent mapping and elite Gauss perturbation[J]. Computer Engineering and Design, 2022, 43(1):186-195. [20] WU L, WU J W, WANG T B. Enhancing grasshopper optimization algorithm(GOA)with levy flight for engineering applications[J]. Scientific Reports, 2023, 13: 124. [21] 匡鑫, 阳波, 马华, 等. 多策略改进的蜣螂优化算法[J]. 计算机工程, 2024, 50(10): 119-136. KUANG Xin, YANG Bo, MA Hua, et al. Multi-strategy improved dung beetle optimization algorithm[J]. Computer Engineering, 2024, 50(10): 119-136. [22] 邱文浩. 基于改进浣熊优化算法的含抽水蓄能电力系统经济调度研究[D]. 南昌: 南昌大学, 2024: 14-16. QIU Wenhao. Research on economic dispatch of pumped storage power systems based on improved coati optimization algorithm[D]. Nanchang: Nanchang Univer-sity, 2024: 14-16. [23] WILCOXON F. Individual comparisons by ranking methods[J]. Biometrics, 1945, 1: 80-83. |
| [1] | 文裕杰,张达敏. 增强型白鲸优化算法及其应用[J]. 山东大学学报 (工学版), 2025, 55(3): 88-99. |
|
||