您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2026, Vol. 56 ›› Issue (1): 49-62.doi: 10.6040/j.issn.1672-3961.0.2025.003

• 机器学习与数据挖掘 • 上一篇    

基于非线性自适应的改进浣熊优化算法及应用

柳宗元1,2,李小光1,2*,侯宇翔1,2,丁昊1,2   

  1. 1.青岛大学自动化学院, 山东 青岛 266071;2.青岛大学智能无人系统研究院, 山东 青岛 266071
  • 发布日期:2026-02-03
  • 作者简介:柳宗元(2000— ),男,山东聊城人,硕士研究生,主要研究方向为智能优化算法及应用. E-mail:liuzongyuan@qdu.edu.cn. *通信作者简介:李小光(1962— ),男,江苏南京人,教授,博士生导师,博士,主要研究方向为智能无人系统. E-mail:lixiaoguang@qdu.edu.cn

Improved coati optimization algorithm based on nonlinear adaptation and applications

LIU Zongyuan1,2, LI Xiaoguang1,2*, HOU Yuxiang1,2, DING Hao1,2   

  1. LIU Zongyuan1, 2, LI Xiaoguang1, 2*, HOU Yuxiang1, 2, DING Hao1, 2(1. School of automation, Qingdao University, Qingdao 266071, Shandong, China;
    2. Intelligent Unmanned Systems Research Institute, Qingdao University, Qingdao 266071, Shandong, China
  • Published:2026-02-03

摘要: 针对浣熊优化算法(coati optimization algorithm, COA)全局搜索能力不足、易陷入局部最优和收敛速度慢的问题,提出一种基于非线性自适应的改进浣熊优化算法(improved coati optimization algorithm based on nonlinear adaptation, NACOA)。采用Logistic-Tent映射初始化浣熊种群,提升算法初始搜索空间覆盖度,生成更加分散且高质量的初始解;引入莱维飞行策略,利用其长跳跃特性,增强算法的全局搜索能力,有效避免算法陷入局部最优;利用非线性递减惯性权重提高种群的适应性与搜索效率,平衡全局搜索和局部搜索能力,并通过黄金正弦策略提高种群收敛精度。在基准测试函数上进行对比仿真试验,结果表明NACOA具有更好的收敛速度和寻优精度。将NACOA应用到工程问题设计中,证明了该算法的有效性和实用性。

关键词: 浣熊优化算法, Logistic-Tent映射, 非线性递减惯性权重, 黄金正弦策略, 工程应用

Abstract: Aiming to address the problems of insufficient global search capability, easily falling into local optima, and slow convergence speed of the coati optimization algorithm(COA), an improved coati optimization algorithm based on nonlinear adaptation(NACOA)was proposed. A Logistic-Tent mapping was used to initialize the coati population, which improved the initial search space coverage of the algorithm and generated more dispersed and high-quality initial solutions. The Levy flight strategy was introduced, which made use of its long-jump characteristic to enhance the global search capability of the algorithm and effectively avoided the algorithm from falling into local optima. The nonlinearly diminishing inertia weight was used to increase the adaptability of the population and the search efficiency, balance the global and local search capabilities, and improve the population convergence accuracy through the golden sine strategy. Comparative simulation experiments were conducted on benchmark test functions, and the results showed that NACOA had better convergence speed and optimization accuracy. The NACOA was applied to the design of engineering problems, which proved the effectiveness and practicality of this algorithm.

Key words: coati optimization algorithm, Logistic-Tent mapping, nonlinearly diminishing inertia weight, golden sine strategy, engineering application

中图分类号: 

  • TP301.6
[1] REZAEI F, SAFAVI H R, ABD ELAZIZ M, et al. GMO: geometric mean optimizer for solving engineering problems[J]. Soft Computing, 2023, 27(15): 10571-10606.
[2] SHEHADEH H A. Chernobyl disaster optimizer(CDO): a novel meta-heuristic method for global optimization[J]. Neural Computing and Applications, 2023, 35(15): 10733-10749.
[3] ZOLFI K. Gold rush optimizer: a new population-based metaheuristic algorithm[J]. Operations Research and Decisions, 2023, 33(1): 113-150.
[4] MIRRASHID M, NADERPOUR H. Incomprehensible but intelligible-in-time logics: theory and optimization algorithm[J]. Knowledge-Based Systems, 2023, 264: 110305.
[5] DENG L Y, LIU S Y. Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design[J]. Expert Systems with Applications, 2023, 225: 120069.
[6] DEHGHANI M, MONTAZERI Z, TROJOVSKÁ E, et al. Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2023, 259: 110011.
[7] 苏仁斌, 熊卫红, 刘先珊, 等. 基于新型元启发式BP神经网络的500 kV覆冰输电线路力学响应预测研究[J]. 应用基础与工程科学学报, 2024, 32(1): 100-122. SU Renbin, XIONG Weihong, LIU Xianshan, et al. Study on BP neural network based on a new metaheuristic optimization algorithm and prediction of mechanical response for 500 kV UHV transmission lines considering icing[J]. Journal of Basic Science and Engineering Sciences, 2024, 32(1): 100-122.
[8] ABDULLAH MENGASH A, ALQAHTANI H, MARAY M, et al. Coati optimization-based energy efficient routing protocol for unmanned aerial vehicle communication[J]. Computers, Materials & Continua, 2023, 75(3): 4805-4820.
[9] MEKHAMER A S, HASANIEN H M, ALHARBI M, et al. Coati optimization algorithm-based optimal frequency control of power systems including storage devices and electric vehicles[J]. Journal of Energy Storage, 2024, 93: 112367.
[10] HUAN J J, HE Y L, SUN K, et al. Capacity planning for wind, solar, thermal and energy storage in power generation systems considering coupled electricity-carbon markets[J]. IET Generation, Transmission & Distri-bution, 2024, 18(24): 4090-4104.
[11] LEI W, WANG G, WAN B Q, et al. High voltage shunt reactor acoustic signal denoising based on the combination of VMD parameters optimized by coati optimization algorithm and wavelet threshold[J]. Measurement, 2024, 224: 113854.
[12] 秦敏敏, 刘立芳, 齐小刚. 面向维修资源分配调度的遗传-长鼻浣熊混合优化算法[J]. 智能系统学报, 2023, 18(6): 1322-1335. QIN Minmin, LIU Lifang, QI Xiaogang. Hybrid genetic long-nosed raccoon optimization algorithm for mainte-nance resource allocation and scheduling[J]. CAAI Transactions on Intelligent Systems, 2023, 18(6): 1322-1335.
[13] 杨世源. 基于自适应克里金模型的混合不确定性设计优化方法研究[D]. 成都: 电子科技大学, 2024: 14-15. YANG Shiyuan. Design andoptimization method based on adaptive Kriging model under mixed uncertainty[D]. Chengdu: University of Electronic Science and Technology of China, 2024: 14-15.
[14] THIRUMOORTHY K, JEROLD JOHN BRITTO J. A two-stage feature selection approach using hybrid quasi-opposition self-adaptive coati optimization algorithm for breast cancer classification[J]. Applied Soft Compu-ting, 2023, 146: 110704.
[15] WANG C, LIN H, YANG M, et al. A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm[J]. Chaos, Solitons & Fractals, 2024, 187: 115442.
[16] RAVINDRAN N, ANTO KUMAR R P. SECOA: serial exponential coati optimization algorithm for MANET routing with link lifetime prediction[J]. Engineering Science and Technology, an International Journal, 2024, 59: 101869.
[17] ARORA S, ANAND P. Chaotic grasshopper optimi-zation algorithm for global optimization[J]. Neural Computing and Applications, 2019, 31(8): 4385-4405.
[18] 李鹏, 丁倩雯. 基于麻雀算法优化的OSTU分割算法[J]. 电子测量技术, 2021, 44(19): 148-154. LI Peng, DING Qianwen. OSTU segmentation algorithm based on sparrow algorithm optimization[J]. Electronic Measurement Technology, 2021, 44(19): 148-154.
[19] 蔡娟. 混沌映射与精英高斯扰动的非线性灰狼优化算法[J]. 计算机工程与设计, 2022, 43(1): 186-195. CAI Juan. Non-linear gray wolf optimization algorithm based on chaotic Tent mapping and elite Gauss perturbation[J]. Computer Engineering and Design, 2022, 43(1):186-195.
[20] WU L, WU J W, WANG T B. Enhancing grasshopper optimization algorithm(GOA)with levy flight for engineering applications[J]. Scientific Reports, 2023, 13: 124.
[21] 匡鑫, 阳波, 马华, 等. 多策略改进的蜣螂优化算法[J]. 计算机工程, 2024, 50(10): 119-136. KUANG Xin, YANG Bo, MA Hua, et al. Multi-strategy improved dung beetle optimization algorithm[J]. Computer Engineering, 2024, 50(10): 119-136.
[22] 邱文浩. 基于改进浣熊优化算法的含抽水蓄能电力系统经济调度研究[D]. 南昌: 南昌大学, 2024: 14-16. QIU Wenhao. Research on economic dispatch of pumped storage power systems based on improved coati optimization algorithm[D]. Nanchang: Nanchang Univer-sity, 2024: 14-16.
[23] WILCOXON F. Individual comparisons by ranking methods[J]. Biometrics, 1945, 1: 80-83.
[1] 文裕杰,张达敏. 增强型白鲸优化算法及其应用[J]. 山东大学学报 (工学版), 2025, 55(3): 88-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!