您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2026, Vol. 56 ›› Issue (1): 133-141.doi: 10.6040/j.issn.1672-3961.0.2024.341

• 土木工程 • 上一篇    

碎粉岩地层丙烯酸盐基注浆加固体水稳性研究

阮鹏飞,宓祥云,林春金*,李召峰,杨磊,张健,孙科科   

  1. 山东大学岩土与地下工程研究院, 山东 济南 250061
  • 发布日期:2026-02-03
  • 作者简介:阮鹏飞(1999— ),男,山东单县人,硕士研究生,主要研究方向为富水致密砂层注浆材料研发. E-mail: l1011rpf@163.com. *通信作者简介:林春金(1980— ),男,山东高唐人,副教授,博士生导师,博士,主要研究方向为基础工程及隧道工程. E-mail: linchunjin@sdu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2022YFB2601900,2022YFB2601903);国家自然科学基金资助项目(51979153,52209138,52178338);山东省重点研发计划(重大科技创新工程)资助项目(2020CXGC011405,2021CXGC010301);云南省重点研发计划资助项目(202103AA080016)

Study on water stability of acrylate-based grouting-solids of ultracataclasite strata

RUAN Pengfei, MI Xiangyun, LIN Chunjin*, LI Zhaofeng, YANG Lei, ZHANG Jian, SUN Keke   

  1. RUAN Pengfei, MI Xiangyun, LIN Chunjin*, LI Zhaofeng, YANG Lei, ZHANG Jian, SUN Keke(Institute of Geotechnical and Underground Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2026-02-03

摘要: 针对富水环境下丙烯酸盐基注浆材料加固碎粉岩地层时强度劣化机制不明确的问题,研究材料组分与地下水侵蚀离子(Cl-,OH-)对碎粉岩注浆加固体力学性能的影响规律。通过研究主剂((CH2CHCOO)2Ca、(CH2CHCOO)2Mg)、改性剂(α-CaSO4·0.5H2O)和交联剂(C14H18O7)掺量(单一组分与改性丙烯酸盐基注浆材料溶液的质量分数)变化对碎粉岩注浆加固体复合离子环境下力学性能影响,确定丙烯酸盐基注浆材料配合比;开展不同Cl-体积浓度、pH及侵蚀龄期的富水离子环境侵蚀模拟试验,测试碎粉岩注浆加固体的单轴抗压强度;利用红外光谱(FTIR)揭示侵蚀机理,利用低场核磁共振成像(LF-NMRI)分析微观结构演变规律。结果表明,改性剂(α-CaSO4·0.5H2O)掺量的变化是碎粉岩注浆加固体抗压强度提升的主要因素;Cl-体积浓度和pH升高及侵蚀龄期延长导致碎粉岩注浆加固体单轴抗压强度持续下降,极端碱性条件(pH=14)下加固体5 d内完全丧失抗压强度;Cl-取代注浆材料凝胶体结构中的羟基(—OH),破坏了氢键,OH-对注浆材料凝胶体有机网络结构中的酯基(—COO—)造成破坏,低场核磁共振成像表明二者侵蚀会加速碎粉岩注浆加固体内部孔隙的生成。

关键词: 丙烯酸盐基注浆材料, 碎粉岩地层, 富水环境, 离子侵蚀, 劣化机制

Abstract: In view of the problem that the strength deterioration mechanism of acrylate-based grouting materials was unclear when reinforcing ultracataclasite strata in water-rich environment, this study investigated the effects of material composition and groundwater corrosive ions(Cl-, OH-)on the mechanical properties of the grouting-solids of ultracataclasite. By studying the effects of the change in dosage(Mass ratio of single-component to modified acrylate-based grouting material solution)of main agent((CH2CHCOO)2Ca,(CH2CHCOO)2Mg), modifier(α-CaSO4·0.5H2O)and crosslinker(C14H18O7)on the mechanical properties of the grouting-solids of ultracataclasite in composite ion environment, the mix ratio of the acrylate-based grouting materials was determined. Simulation experiments was carried out on water-rich ion environment erosion experiments at different Cl- volume concentrations, pH and erosion ages, the uniaxial compressive strength of grouting-solids of ultracataclasite was tested. Infrared spectroscopy(FTIR)was used to reveal the erosion mechanism, and low-field magnetic resonance imaging(LF-NMRI)was used to analyze the evolution of microstructure. The results showed that the change of modifier(α-CaSO4·0.5H2O)was the main factor for the improvement of the compressive strength of the grouting-solids of ultracataclasite. The increase of Cl- volume concentrations, pH and the prolongation of age led to a continuous decrease in the uniaxial compressive strength of grouting-solids of ultracataclasite, and the compressive strength completely disappeared within 5 days under extreme alkaline conditions(pH=14). Cl- replaced the hydroxyl group(—OH)in the structure of the grouting material gel and broke the hydrogen bond, while OH- destroyed the ester group(—COO—)in the organic network structure of the grouting material. The results of low-field magnetic resonance imaging showed that the erosion of the two accelerated the formation of internal pores in the grouting-solids of ultracataclasite. The research findings offered reliable support for the optimization of ion erosion resistance of modified acrylate-based grouting materials and the evaluation of their service performance in practical engineering.

Key words: acrylic-based grouting material, ultracataclasite strata, water-rich environment, ionic erosion, deterioration mechanism

中图分类号: 

  • TU52
[1] 李利平, 成帅, 张延欢, 等. 地下工程安全建设面临的机遇与挑战[J]. 山东科技大学学报(自然科学版), 2020, 39(4): 1-13. LI Liping, CHENG Shuai, ZHANG Yanhuan, et al. Opportunities and challenges of construction safety in underground engineering projects[J]. Journal of Shandong University of Science and Technology(Natural Science), 2020, 39(4): 1-13.
[2] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10): 1945-1956. QIAN Qihu. Challenges faced by underground projects constructions afety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956.
[3] HAO C L, FENG G R, WANG P F. Proportion optimization of grouting materials for roadways with soft surrounding mass[J]. International Journal of Green Energy, 2021, 18(2): 203-218.
[4] 刘人太, 马晨阳, 杨磊, 等. 一种兼具渗透与劈裂功能的复合注浆材料研发与现场试验[J]. 岩石力学与工程学报, 2024, 43(增刊2): 3651-3667. LIU Rentai, MA Chengyang, YANG Lei, et al. Experimental and applied research on a composite grouting material with the functions of permeable and splitting[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(Suppl.2): 3651-3667.
[5] 杨磊, 杨洋, 张童, 等. 碎粉岩地层水平旋喷注浆扩散加固规律与影响因素研究[J]. 中南大学学报(自然科学版), 2025, 56(4): 1477-1488. YANG Lei, YANG Yang, ZHANG Tong, et al. Study on diffusion reinforcement law and influencing factors of horizontal rotary jet grouting in ultracataclasite strata[J]. Journal of Central South University(Science and Technology), 2025, 56(4): 1477-1488.
[6] 潘旭东, 李鸿钊, 郭焱旭, 等. 海洋环境下注浆加固体的力学性能演化[J]. 山东大学学报(工学版), 2023, 53(5): 112-120. PAN Xudong, LI Hongzhao, GUO Yanxu, et al. Mechanical properties of grouting reinforced body in the seawater environment[J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 112-120.
[7] 吴祥集, 张玉增, 韩伟伟, 等. 水泥浆液在砂层注浆中的渗滤效应分析[J]. 建设科技, 2023,(17):96-99. WU Xiangji, ZHANG Yuzeng, HAN Weiwei, et al. Analysis of filtration effect of cement grout in sand layer grouting[J]. Construction Science and Technology, 2023,(17):96-99.
[8] 李阳, 王玉超, 陈贵锋, 等. 矿用聚氨酯注浆材料改性研究进展[J/OL]. 化工新型材料,[2025-03-11].https://link.cnki.net/urlid/11.2357.TQ.20250310.1641.006 LI Yang, WANG Yuchao, CHEN Guifeng, et al. Research progress on modification of mining polyurethane grouting materials[J/OL]. New Chemical Materials,[2025-03-11].https://link.cnki.net/urlid/11.2357.TQ.20250310.1641.006
[9] ZHANG S T, FENG R, ZHANG J, et al. Nano-layered double hydroxides as efficient endothermic, strengthening, and flame-retardant agents for fly ash/polyurethane composite materials[J]. Composites Communications, 2025, 53: 102168.
[10] HUANG Q H, YUAN C, LI S C, et al. Influence of raw material temperature on the properties of silicate-modified polyurethane grouting materials[J]. Case Studies in Construction Materials, 2024, 21: e03479.
[11] LI Z, CAI H, LIU J, et al. Research on new magnetic epoxy resin composite slurry materials and localization grouting diffusion mechanism[J]. Scientific Reports, 2024, 14: 20115.
[12] LI Z C, HUANG F, YANG Y Y, et al. Improving the anti-washout property of acrylate grouting material by bentonite: its characterization, improving mechanism, and practical application[J]. Polymers, 2023, 15(19): 3865.
[13] 杨磊, 宓祥云, 李召峰, 等. 适用于致密碎粉岩富水地层的高强丙烯酸盐注浆材料研发及渗透加固特性研究[J]. 岩土工程学报, 2025, 47(3): 525-534. YANG Lei, MI Xiangyun, LI Zhaofeng, et al. Development and permeability reinforcement chara-cteristics of high-strengthacrylic salt grouting materials for water-rich ultracataclasite[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 525-534.
[14] 马瑞琪. 丙烯酸盐-吸水树脂复配注浆堵漏材料试验研究[D]. 济南: 山东建筑大学, 2023. MA Ruiqi. Experimental study on acrylic-absorbent resin compound grouting plugging materials[D]. Jinan: Shandong Jianzhu University, 2023.
[15] 廖晓东. 丙烯酸盐注浆材料堵漏特性试验研究[D]. 北京: 北京交通大学, 2019. LIAO Xiaodong. Experiental study on piugging characteristics of acrylate grouting material[D]. Beijing: Beijing Jiaotong Univeisity, 2019.
[16] 葛洋洋, 高可为, 易伟建, 等. 地下工程丙烯酸盐灌浆材料损伤模式研究[J]. 工业建筑, 2023, 53(增刊1):703-707. GE Yangyang, GAO Kewei, YI Weijian, et al. Study on damage mode of acrylic grouting material in underground engineering[J]. Industrial Construction, 2023, 53(Suppl.1):703-707.
[17] 杨其新, 盛草樱, 张晓锋. 侵蚀性介质对丙烯酸盐喷膜防水材料性能的影响[J]. 现代隧道技术, 2008, 45(6): 39-45. YANG Qixin, SHENG Caoying, ZHANG Xiaofeng. Influence of corrosive environment on the performance and failure of acrylate spray-applied waterproof membrane [J]. Modern Tunnelling Technology, 2008, 45(6): 39-45.
[18] 李哲, 张庭顺, 杨建国, 等. 丙烯酸盐喷膜防水材料在酸碱浸润和冻融循环条件下的耐久性试验分析[J]. 实验力学, 2020, 35(2): 199-206. LI Zhe, ZHANG Tingshun, YANG Jianguo, et al. Expermental analysis of durability of acrylic spray film waterproofing material under acid wetting and freeze-thaw cycles[J]. Journal of Experimental Mechanics, 2020, 35(2): 199-206.
[19] 汪健. 单线铁路隧道防水工艺及材料耐久性研究[D]. 成都:西南交通大学, 2016: 63-64. WANG Jian. Study on waterproof technology and material durability of single-line railway tunnel[D]. Southwest Jiaotong University, 2016: 63-64.
[20] 张童. 碎粉岩致密地层高压喷射注浆扩散与加固规律研究[D]. 济南:山东大学, 2023: 10-17. ZHANG Tong. Study on diffusion and reinforcement law of high-pressure jet grouting in dense ultracataclasite strata[D]. Jinan: Shandong Univeisity, 2023: 10-17.
[21] YAN D, LAI L P, XIAO X D, et al. Water consolidation performance of acrylic-polymer-modified materials and their concrete impermeability repair characteristics[J]. Gels, 2023, 9(9): 764.
[22] 付汝松. 磷石膏基胶凝材料耐久性能研究[D]. 贵阳: 贵州大学, 2023: 49-50. FU Rusong. Study on the durability of phosphogypsum-based cementitious materials[D]. Guiyang: Guizhou University, 2023: 49-50.
[23] 贾丽莉. 丙烯酸盐对水泥性能及水化进程的影响[D]. 济南:济南大学, 2012: 44. JIA Lili. Effect of acrylate on the mechanical performance and the hydration process of cement[D]. Jinan: Jinan University, 2012: 44.
[24] 杨娟. 基于丙烯酸盐喷膜防水的CSL隧道支护结构研究[D]. 成都: 西南交通大学, 2020: 55-56. YANG Juan. A study of an acrylate-based sprayed membrane for waterproofing of composity shell lining tunnels[D]. Chengdu: Southwest Jiaotong University, 2020: 55-56.
[25] 慕儒. 冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D]. 南京: 东南大学, 2000: 102-111. MU Ru. Durability and service life prediction of concrete subjected to the combined action of freezing-thawing, sustained external flexural stress and salt solution[D]. Nanjing: Southeast University, 2000: 102-111.
[26] 达波, 卿家骏, 刘金文, 等. 海洋工程混凝土结构服役寿命预测及耐久性设计方法[J]. 中国表面工程, 2025, 38(3):285-296. DA Bo, QING Jiajun, LIU Jinwen, et al. Service life prediction and durability design method of marine concrete structures[J]. China Surface Engineering, 2025, 38(3): 285-296.
[27] YAKOVCHUK P V, SAVCHUK E V, SHUKAYEV S M. Critical plane approach-based fatigue life prediction for multiaxial loading: a new model and its verification[J]. Strength of Materials, 2024, 56(2): 281-291.
[1] 周勇,李召峰,左志武,王川,林春金,张新,姚望. 滨海岩溶注浆充填体性能研究[J]. 山东大学学报 (工学版), 2022, 52(1): 103-110.
[2] 赵建锋,李洪一,刘苏文. 基于钢筋锈蚀的RC桥墩抗震性能[J]. 山东大学学报(工学版), 2017, 47(3): 112-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!