您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (2): 35-41.

• 机器学习与数据挖掘 • 上一篇    下一篇

谱聚类中特征向量的Bagging选取方法

王兴良,王立宏*,李海军   

  1. 烟台大学计算机学院, 山东 烟台 264005
  • 收稿日期:2012-10-12 出版日期:2013-04-20 发布日期:2012-10-12
  • 通讯作者: 王立宏(1970- ),女,吉林镇赉人,教授,博士,硕士生导师,主要研究方向为数据挖掘.E-mail:wanglh-000@163.com
  • 作者简介:王兴良(1988- ),男,山东临朐人,硕士研究生,主要研究方向为数据挖掘.E-mail:wangxingliang0911@163.com
  • 基金资助:

    国家自然科学基金资助项目(61170224);山东省计算机网络重点实验室开放课题基金资助项目(SDKLCN-2012-03)

Eigenvector selection in spectral clustering based on Bagging

WANG Xing-liang, WANG Li-hong*, LI Hai-jun   

  1. School of Computer Science & Technology, Yantai University, Yantai 264005, China
  • Received:2012-10-12 Online:2013-04-20 Published:2012-10-12

摘要:

谱聚类算法中用亲和矩阵特征值最大的k个特征向量并不总是能有效地发现数据集的结构。为了选取较好特征向量,提出了一种特征向量的Bagging选取算法。以成对约束计分方法为评价标准,对特征向量进行评价并选出较好的特征向量,将多次选择的特征向量进行Bagging集成(Bootstrap aggregating),得出k个特征向量的组合。该算法能够较好地选取出特征向量,根据UCI实验数据集的测试,证实该算法对测试数据集可以得出较好的预测结果。

关键词: 谱聚类, Bagging方法, 特征向量选择, 拉普拉斯矩阵, 约束计分

Abstract:

For the spectral clustering algorithm, the largest k eigenvectors of the affinity matrix derived from the dataset were not always able to find the structure of dataset effectively. An eigenvector selection algorithm in spectral clustering based on Bagging was proposed in order to select better eigenvectors. The  eigenvectors were evaluated by pairwise constraints score. First, some eigenvectors were ranked according to their constraint scores, and then the suitable eigenvectors were selected from the ranking list, finally the optimal combination of k eigenvectors was obtained by Baggingbased ensemble algorithm. The better eigenvectors could be achieved. Experimental results on UCI benchmark datasets showed that this algorithm could gain satisfactory prediction results.

Key words: eigenvector selection, spectral clustering, constraint score, Laplacian matrix, Bagging method

中图分类号: 

  • TP301
[1] 张鑫,费可可. 基于log鲁棒核岭回归的子空间聚类算法[J]. 山东大学学报 (工学版), 2023, 53(6): 26-34.
[2] 程业超,刘惊雷. 自适应图正则的单步子空间聚类[J]. 山东大学学报 (工学版), 2022, 52(2): 57-66.
[3] 庞人铭,王波,叶昊,张海峰,李明亮. 基于PCA相似度和谱聚类相结合的高炉历史数据聚类[J]. 山东大学学报(工学版), 2017, 47(5): 143-149.
[4] 樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报(工学版), 2016, 46(1): 28-33.
[5] 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曲延鹏,陈颂英,李春峰,王小鹏,滕书格 . 低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J]. 山东大学学报(工学版), 2006, 36(4): 16 -20 .
[2] 孙玉利,李法德,左敦稳,戚美 . 直立分室式流体连续通电加热系统的升温特性[J]. 山东大学学报(工学版), 2006, 36(6): 19 -23 .
[3] 孔维涛,张庆范,张承慧 . 基于DSP的空间矢量脉宽调制(SVPWM)的实现[J]. 山东大学学报(工学版), 2008, 38(3): 81 -84 .
[4] 薛强,艾兴,赵军,周咏辉,袁训亮 . 纳米TiC对Si3N4基复合陶瓷材料性能和微观结构的影响[J]. 山东大学学报(工学版), 2008, 38(3): 69 -72 .
[5] 高厚磊 田佳 杜强 武志刚 刘淑敏. 能源开发新技术——分布式发电[J]. 山东大学学报(工学版), 2009, 39(5): 106 -110 .
[6] 任敬喜,耿金花,高齐圣 . 多因素多指标产品的质量优化[J]. 山东大学学报(工学版), 2007, 37(3): 114 -117 .
[7] 施来顺,万忠义,王鲁艳,薛玉涛 . 新型Gemini型阳离子沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2007, 37(3): 122 -126 .
[8] 方炜, , 姜长生, , 钱承山 . 一类非线性不确定时滞系统的模糊跟踪控制[J]. 山东大学学报(工学版), 2007, 37(5): 47 -52 .
[9] 马其华 王宜泰. 高密度电阻率法在煤矿界外巨空水探测上的应用[J]. 山东大学学报(工学版), 2009, 39(4): 107 -111 .
[10] 韩雪. 平庄西露天煤矿滑坡灾害远程监测实例分析[J]. 山东大学学报(工学版), 2009, 39(4): 116 -120 .