您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (4): 29-33.

• 论文 • 上一篇    下一篇

基于机器学习的视频指纹识别

何雪英1,2, 秦伟1, 尹义龙1*, 赵联征1,乔昊3   

  1. 1.山东大学计算机科学与技术学院, 山东 济南 250101;
    2. 山东中医药大学理工学院, 山东 济南 250355
  • 收稿日期:2011-01-23 出版日期:2011-08-16 发布日期:2011-01-23
  • 通讯作者: 尹义龙(1972- ),男,山东菏泽人,教授,博士,主要研究方向为数据挖掘与机器学习、生物特征识别.E-mail:ylyin@sdu.edu.cn E-mail:ylyin@sdu.edu.cn
  • 作者简介:何雪英(1979- ),女,山东济宁人,讲师,学士,主要研究方向为指纹识别,机器学习.E-mail:hxy0104@163.com
  • 基金资助:

    山东省自然科学基金(Z2008G05);济南市科技局高等院所自主创新项目(201004004);山东大学自主创新基金自然科学类专项(2009TS035)

Video-based fingerprint verification using machine learning

HE Xue-ying1, 2, QIN Wei1, YIN Yi-long1 *, ZHAO Lian-zheng1,QIAO Hao3   

  1. 1. School of Computer Science and Technology,Shandong University, Jinan 250101, China;
    2. Institute of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
  • Received:2011-01-23 Online:2011-08-16 Published:2011-01-23

摘要:

把视频应用于指纹识别,定义指纹视频的内部相似性(inside similarity,SI)和一对待匹配指纹视频的外部相似性(outside similarity,SO),计算两个视频的匹配分数来表示它们的相似性,大大提高了自动指纹识别系统的识别率。为寻求更好的识别效果,提出把一次匹配结果作为一个样本,将SI和SO作为一个样本的两个特征的新思路,把判断一次匹配是同源匹配还是异源匹配问题转化为对具有二维特征(SI,SO)的样本进行分类的问题。在样本集上应用常见的机器学习算法,对每次的匹配结果进行分类。在两组样本集上的实验结果为:应用机器学习算法得到的最低错误率分别为0.1704%和0.1106%,而使用阈值得到的最低错误率分别为0.2229%和0.1700%。结果表明,相比使用阈值来区分指纹同、异源的方法,应用机器学习算法不仅提高了识别率,而且省去了计算两个视频的匹配分数时对参数和阈值的复杂选取过程。

关键词: 指纹识别, 视频, 机器学习

Abstract:

Fingerprint video was utilized for fingerprint verification. Inside similarity (SI) and outside similarity (SO) were defined and used to calculate the final matching score of two fingerprint videos. A new idea was proposed to acquire the optimized performance of fingerprint verification. A matching result with two features SI and SO was viewed as a sample. The task of verifying whether two fingerprint videos are genuine matching or impostor matching, was converted to classification task of samples with two-dimensional features (SI,SO). In additron, the machine learning algorithms were adopted to classify every matching result. Experimental results showed that the minimum error rates calculated through the method of machine learning algorithms were 0.1704% and 0.1106% while those calculated through the method of using threshold were 0.2229% and 0.1700%. The accuracy of video-based fingerprint verification was significantly improved by using machine learning algorithm compared to the results by using threshold. And the current method avoided the complex process of selecting parameters and thresholds.

Key words:  fingerprint verification, video, machine learning

[1] 郑晓,陈鹤,周东傲,宫永顺. 基于视频描述增强和双流特征融合的视频异常检测方法[J]. 山东大学学报 (工学版), 2025, 55(5): 110-119.
[2] 祝明,石承龙,吕潘,刘现荣,孙驰,陈建城,范宏运. 基于优化长短时记忆网络的深基坑变形预测方法及其工程应用[J]. 山东大学学报 (工学版), 2025, 55(3): 141-148.
[3] 谭智方,董飞,卢鹏宇,潘嘉男,聂秀山,尹义龙. 基于跨模态注意力哈希学习的视频片段定位方法[J]. 山东大学学报 (工学版), 2025, 55(1): 58-65.
[4] 王佳如, 吕斌, 吴建清, 王志勇. 基于冲击波模型与YOLOv5-DeepSORT单向耦合的排队长度感知方法[J]. 山东大学学报 (工学版), 2024, 54(5): 42-49.
[5] 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12.
[6] 乔慧妍,段学龙,解驰皓,赵冬慧,马玉玲. 基于异常点检测的心理健康辅助诊断方法[J]. 山东大学学报 (工学版), 2024, 54(4): 76-85.
[7] 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63.
[8] 岳仁峰,张嘉琦,刘勇,范学忠,李琮琮,孔令鑫. 基于颜色和纹理特征的立体车库锈蚀检测技术[J]. 山东大学学报 (工学版), 2024, 54(3): 64-69.
[9] 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11.
[10] 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪[J]. 山东大学学报 (工学版), 2024, 54(1): 100-108.
[11] 卞小曼,王小琴,蓝如师,刘振丙,罗笑南. 基于相似性保持和判别性分析的快速视频哈希算法[J]. 山东大学学报 (工学版), 2023, 53(6): 63-69.
[12] 李鸿钊,张庆松,刘人太,陈新,辛勤,石乐乐. 浅埋地铁车站施工期地表变形风险预警[J]. 山东大学学报 (工学版), 2023, 53(6): 82-91.
[13] 余明骏,刁红军,凌兴宏. 基于轨迹掩膜的在线多目标跟踪方法[J]. 山东大学学报 (工学版), 2023, 53(2): 61-69.
[14] 何子亨,孙丽丽,左修洋,刘鸿雁,王雨晨,车四四,王朔. 基于HMM的国网轮询视频分会场名称识别[J]. 山东大学学报 (工学版), 2022, 52(6): 183-190.
[15] 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[6] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[7] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[8] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[9] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[10] 赵然杭,陈守煜 . 水资源数量与质量联合评价理论模型研究[J]. 山东大学学报(工学版), 2006, 36(3): 46 -50 .