您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (2): 163-166.

• 其它 • 上一篇    下一篇

基于BP神经网络和回归预测的供热调节可靠性

刘庆堂1, 郭京强2, 单宝艳3, 李明1, 潘继红4   

  1. 1. 山东省住房和城乡建设厅, 山东 济南 250001; 2. 沂水市政公司, 山东 沂水 276400;
    3. 山东建筑大学, 山东 济南 250001; 4. 山东大学能源与动力工程学院, 山东 济南 250061
  • 收稿日期:2010-03-23 出版日期:2011-04-16 发布日期:2010-03-23
  • 作者简介:刘庆堂(1971- ),男,山东沂水人,高级工程师,博士,主要研究方向为热力系统节能.E-mail:liuqt2009@163.com

Study on the reliability of heating regulation based on prediction using
the  BP neural network and regression

LIU Qingtang1, GUO Jingqiang2, SHAN Baoyan3, LI Ming1, PAN Jihong4   

  1. 1. Housing and UrbanRural Construction Bureau of Shandong Province, Jinan 250001, China;
    2. Yishui Municipal Company, Yishui 276400, China; 3. Shandong Jianzhu University, Jinan 250001, China;
    4. School of Energy and Power Engineering, Shandong University, Jinan 250061, China
  • Received:2010-03-23 Online:2011-04-16 Published:2010-03-23

摘要:

为了满足供热系统运行调节的需要,提出对系统供水温度和供水流量进行预测研究。选取某实际供热系统某时间段的200组运行参数作为样本,利用matlab7.0进行编程,分别采用反向传播(back propagation,BP)神经网络和回归分析方法进行预测和分析。前者确定合理的BP网络结构,编程并采用traingdm函数进行训练;后者拟合出置信水平高的回归方程。最后,将两种方法的预测值和实际值进行比较,并分析误差。结果表明:二者预测值均可靠,但BP神经网络得到的预测结果更好,误差更小。

关键词: 供热调节, 神经网络, 回归法, 预测

Abstract:

To meet the operational regulation demand of heating system, a study was conducted on the prediction of supply water temperature and water flux in a heating system. 200 groups of operating parameters were selected as samples from a certain period of a practical heating system, processed with matlab7.0, and predicted and analyzed with the back propagation neural network and regression. The former determined a reasonable back propagation network structure,and was  processed and trained with traingdm function. The latter fit a regression equation with high confidence level. Finally,  predicted values of supply temperature and water flux were  compared with the actual values while their errors were analyzed. The result showed that the two forecast values were reliable, but the back propagation neural network had a better result and smaller error.

Key words: heating regulation, neural network, regression, prediction

[1] 黄芳,王欣,高国海,沈玲珍,付勋,方宇. 融合主客观评价的图数据Top-k频繁模式挖掘[J]. 山东大学学报 (工学版), 2025, 55(6): 1-12.
[2] 邵孟伟,袁世飞,周宏志,王乃华. 基于BP神经网络和遗传算法的翅片管结构优化[J]. 山东大学学报 (工学版), 2025, 55(6): 76-82.
[3] 邓彬, 张宗包, 赵文猛, 罗新航, 吴秋伟. 基于云边协同和图神经网络的电动汽车充电站负荷预测方法[J]. 山东大学学报 (工学版), 2025, 55(5): 62-69.
[4] 周群颖,隋家成,张继,王洪元. 基于自监督卷积和无参数注意力机制的工业品表面缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 40-47.
[5] 赵红专,张鑫,张蓓聆,展新,李文勇,袁泉,王涛,周旦. 基于改进人工势场的智能车动态安全椭圆路径规划方法[J]. 山东大学学报 (工学版), 2025, 55(3): 46-57.
[6] 薛冰冰,王勇,杨维浩,王川,于迪,王旭. 基于ETC收费数据的高速公路交通流数据修复及实时预测[J]. 山东大学学报 (工学版), 2025, 55(3): 58-71.
[7] 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79.
[8] 耿麒,李晓斌,黄雨枫,汪学斌,杨沐霖,郭惠川,章慧健. 基于小尺度滚刀直线切割试验的岩石强度预测[J]. 山东大学学报 (工学版), 2025, 55(3): 111-120.
[9] 贾轩,许吉凯,任艺婧,刘德才,许强,张利. 基于样本扩容和数据驱动的台区理论线损计算方法[J]. 山东大学学报 (工学版), 2025, 55(3): 158-164.
[10] 祝明,石承龙,吕潘,刘现荣,孙驰,陈建城,范宏运. 基于优化长短时记忆网络的深基坑变形预测方法及其工程应用[J]. 山东大学学报 (工学版), 2025, 55(3): 141-148.
[11] 王士柏,孙树敏,程艳,周光奇,关逸飞,刘奕元,张志谦,张祯滨. 计及SOC安全边界的光储联合系统协同控制策略[J]. 山东大学学报 (工学版), 2025, 55(2): 37-44.
[12] 银英姿,魏景涛,泽里罗布,董伟. 基于Wiener退化过程的纤维混凝土抗冻性[J]. 山东大学学报 (工学版), 2025, 55(2): 106-113.
[13] 李伟豪,王苹苹,许万博,魏本征. 结构先验引导的多模态腰椎MRI图像分割算法[J]. 山东大学学报 (工学版), 2025, 55(1): 66-76.
[14] 孙尚渠,张恭禄,蒋志斌,李朝阳. 盾构滚刀磨损的影响因素敏感性分析及预测[J]. 山东大学学报 (工学版), 2025, 55(1): 86-96.
[15] 邹正标,刘毅志,廖祝华,赵肄江. 动态交通流量预测的时空注意力图卷积网络[J]. 山东大学学报 (工学版), 2024, 54(5): 50-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[2] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[3] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[4] 王静,李玉江,张晓瑾, 毕研俊,陈位锁 . 粉煤灰去除水中活性紫KN-B[J]. 山东大学学报(工学版), 2006, 36(6): 100 -103 .
[5] 刘忠国,张晓静,刘伯强,刘常春 . 视觉刺激间隔对大脑诱发电位的影响[J]. 山东大学学报(工学版), 2006, 36(3): 34 -38 .
[6] 张迎春 王佐勋 王桂娟. 基于神经网络控制器的高压电缆测温系统[J]. 山东大学学报(工学版), 2009, 39(5): 62 -67 .
[7] 陈朋 胡文容 裴海燕. 一株反硝化细菌LZ-14的筛选及其脱氮特性[J]. 山东大学学报(工学版), 2009, 39(5): 133 -138 .
[8] 刘兆娟,刘锦波 . 基于输入输出反馈线性化三态Boost DC/DC变换器的新型控制策略[J]. 山东大学学报(工学版), 2008, 38(1): 43 -47 .
[9] 郑洪亮,孔凡利, , 田学雷 . Al-Cu合金成分变化对其凝固潜热影响的研究[J]. 山东大学学报(工学版), 2008, 38(2): 10 -12 .
[10] 贝广霞,楼佩煌,王晓勇,祝恒云,杜辉 . 基于遗传算法的圆柱度误差评定方法[J]. 山东大学学报(工学版), 2008, 38(2): 33 -36 .