您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (2): 12-17.

• 机器学习与数据挖掘 • 上一篇    下一篇

一种带克隆选择的粒子群动态聚类算法

范会联1,罗跃国2,李献礼2   

  1. 长江师范学院 1. 数学与计算机学院; 2. 网络信息中心, 重庆 408100
  • 收稿日期:2010-02-14 出版日期:2011-04-16 发布日期:2010-02-14
  • 作者简介:范会联(1971- ),男,重庆石柱人,副教授,硕士,主要研究方向为软件工程、智能信息处理.Email:fhlmx@163.com
  • 基金资助:

    重庆市教委科学技术研究资助项目(KJ091309)

A dynamic clustering algorithm based on a particle swarm
optimization with clonal selection

FAN Hui-lian1, LUO Yue-guo2, LI Xian-li2   

  1. 1. School of Mathematics and Computer; 2. Computer Network Information Center, Yangtze Normal University,
     Chongqing 408100, China
  • Received:2010-02-14 Online:2011-04-16 Published:2010-02-14

摘要:

针对聚类数不确定的高维、大规模数据聚类问题,提出以粒子群优化算法为基础、引入克隆选择算子的聚类分析算法。该算法利用粒子群的优化搜索机制搜索聚类中心向量,并根据适应度高低控制粒子的克隆数量和变异幅度,达到有效避免陷入局部最优的目的,并能克服传统聚类算法对初始值敏感的缺点,提高了算法的稳定性。仿真实验结果表明,该算法不仅能正确得出聚类簇数,而且聚类正确率较对比算法提高了至少7.0%。

关键词: 克隆选择, 粒子群, 聚类有效性, 亲合力

Abstract:

In order to achieve cluster analysis with highdimensional and unknown number of clusters, a new clustering algorithm based on a particle swarm optimization algorithm(PSO) with clonal selection operator was proposed. Directed by the nature of PSO, this new algorithm could randomly search the clusters centers, and control the clone numbers and variation range by affinity. This algorithm could also avoid being trapped in local optima and could overcome being sensitive to  initialization. Experimental results on benchmark clustering problems showed that this new algorithm could adaptively determine the amount and the center’s positions of clustering. The results also showed that the average correct rate of the new algorithm was higher than the compared algorithm by  at least 7.0%.

Key words: clonal selection, particle swarm, clustering validity, affinity

[1] 杜睿山,井远光,孟令东,张豪鹏. 基于改进多目标粒子群算法的储气库注气优化[J]. 山东大学学报 (工学版), 2024, 54(4): 42-50.
[2] 孙园,曾惠权,欧阳苏建,高佳倩,王绮楠,林智勇. 基于粒子群算法的模糊大脑情感学习非线性系统辨识[J]. 山东大学学报 (工学版), 2024, 54(1): 25-32.
[3] 范海雯,郝旭东,赵康,邢法财,蒋哲,李常刚. 基于卷积神经网络的含分布式光伏配电网静态等值[J]. 山东大学学报 (工学版), 2023, 53(4): 140-148.
[4] 孙东磊, 鉴庆之, 李智琦, 韩学山, 王明强, 陈博, 付一木. 源网协调的电力系统均匀性规划[J]. 山东大学学报 (工学版), 2022, 52(5): 92-101.
[5] 郑店坤,许同乐,尹召杰,孟庆民. 改进PSO-BP神经网络对尾矿坝地下水位的预测方法[J]. 山东大学学报 (工学版), 2019, 49(3): 108-113.
[6] 刘洪铭,曾鸿雁,周伟,王涛. 基于改进粒子群算法作业车间调度问题的优化[J]. 山东大学学报 (工学版), 2019, 49(1): 75-82.
[7] 刘萌,徐陶阳,李常刚,吴越,王智,史方芳,苏建军,张国辉,李宽. 基于粒子群算法的受端电网紧急切负荷优化[J]. 山东大学学报 (工学版), 2019, 49(1): 120-128.
[8] 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报 (工学版), 2018, 48(5): 77-84.
[9] 姬安召,王玉风,刘雪芬. 复合Bessel函数零点数值计算方法及分布规律[J]. 山东大学学报(工学版), 2018, 48(1): 71-77.
[10] 宋正强,杨辉玲,肖丹. 基于在线粒子群优化方法的IPMSM驱动电流和速度控制器[J]. 山东大学学报(工学版), 2018, 48(1): 112-116.
[11] 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62.
[12] 易云飞,苗剑,林郭隆,殷智. 基于牛顿力学和博弈论模型的粒子网络优化算法[J]. 山东大学学报(工学版), 2017, 47(1): 28-36.
[13] 范德斌,邓长寿,袁斯昊,谭旭杰,董小刚. 基于MapReduce模型的分布式粒子群算法[J]. 山东大学学报(工学版), 2016, 46(6): 23-30.
[14] 戴红伟, 杨玉, 仲兆满, 李存华. 改进量子交叉免疫克隆算法及其应用[J]. 山东大学学报(工学版), 2015, 45(2): 17-21.
[15] 董红斌, 张广江, 逄锦伟, 韩启龙. 一种基于协同进化方法的聚类集成算法[J]. 山东大学学报(工学版), 2015, 45(2): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[2] 梁京芸,王明刚,柴家前,刘永庆 . 1.6-二-(N5-取代苯基-N1-二胍)己烷盐酸盐的合成和体外抗菌活性[J]. 山东大学学报(工学版), 2008, 38(3): 104 -107 .
[3] 罗运虎,邢丽冬,王勤,刘海春,翁晓光 . 需求侧2种可中断负荷备用市场报价策略的协调[J]. 山东大学学报(工学版), 2008, 38(3): 77 -80 .
[4] 郑桂兰,关瑞芳,隋 肃,李建权,李国忠 . 反应型反光型道路标线涂料识别效果研究[J]. 山东大学学报(工学版), 2007, 37(1): 86 -89 .
[5] 贾超,赵建宇,徐帮树,岳长城,李树忱 . 清水隧道围岩软土振动液化研究[J]. 山东大学学报(工学版), 2008, 38(1): 83 -87 .
[6] 李贻斌,阮久宏,刘鲁源,宋 锐,荣学文 . 车辆纵向加速度自抗扰控制研究[J]. 山东大学学报(工学版), 2008, 38(4): 1 -04 .
[7] 吴 皓,田国会,黄 彬 . 未知环境探测的多机器人协作策略研究[J]. 山东大学学报(工学版), 2008, 38(4): 27 -31 .
[8] 廖伙木,董增川, 束龙仓,贠汝安 . 地下水位预报中的组合时间序列分析法[J]. 山东大学学报(工学版), 2008, 38(2): 96 -100 .
[9] 张庆松 李术才 韩宏伟 葛颜慧 刘人太 张霄. 岩溶隧道施工风险评价与突水灾害防治技术研究[J]. 山东大学学报(工学版), 2009, 39(3): 106 -110 .
[10] 李春晓 岳钦艳 卢磊 高宝玉 杨忠莲 司晓慧 倪寿清 王元芳. 疏水缔合阳离子聚丙烯酰胺的合成与应用[J]. 山东大学学报(工学版), 2008, 38(6): 99 -104 .