您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (4): 36-41.

• 控制科学与工程 • 上一篇    下一篇

基于均值距离的图像分割方法

王新沛1,刘常春1*,白曈2   

  1. 1. 山东大学控制学院, 山东 济南 250061; 2. 山东省肿瘤医院, 山东 济南 250117
  • 收稿日期:2010-01-16 出版日期:2010-08-16 发布日期:2010-01-16
  • 通讯作者: 刘常春(1959-),男,山东烟台人,教授,博士研究生导师,主要研究方向为生物医学信号处理. E-mail:E-mail: changchunliu@sdu.edu.cn
  • 作者简介:王新沛(1982-),女,山东济南人,博士研究生,主要研究方向为生物医学信号处理. E-mail: wangxinpei@mail.sdu.edu.cn
  • 基金资助:

    国家高技术研究发展计划(863计划)资助项目(2006AA02Z4D9)

An image segmentation method based on mean divergence

WANG Xin-pei1, LIU Chang-chun1*, BAI Tong2   

  1. 1. School of Control Science and Engineering, Shandong University, Jinan 250061, China;
    2. Shandong Tumor Hospital, Jinan 250117, China
  • Received:2010-01-16 Online:2010-08-16 Published:2010-01-16

摘要:

针对医学图像分割中存在的分割类数不易确定的问题,利用常用均值间的不等式关系构造出了一种新的分割类数判据——均值距离函数,并将均值距离函数与模拟退火算法相结合,提出了一种基于均值距离的分割算法。该算法以均值距离函数作为目标函数,采用模拟退火算法进行优化,在整个搜索空间中寻找最优分割阈值,弥补了模糊C均值算法(fuzzy C-means,FCM)分类类数难以确定、搜索过程容易陷入局部极值的缺陷。实验结果表明,算法对含有病灶的医学图像能够进行自动分割,并且分割速度明显高于基于互信息的分割方法。

关键词: 图像分割, 医学图像, 均值距离, 模拟退火, 相似性

Abstract:

In the research of medical image segmentation, it is difficult to determine the number of segmentation classes. To solve the problem, a novel measurement for determining the number of classes named mean divergence function was formed according to the relation among three common means. And then an image segmentation method based on mean divergence and simulated annealing was proposed. In this method, the mean divergence function is used as an optimization object and simulated annealing is used as an optimization method to find the optimal segmentation threshold in overall search space. This overcomes the shortcomings of fuzzy C-means (FCM) clustering algorithm, such as it is hard to determine the number of classes and easy to get into a local extremum. Experimental results show that this method could automatically segment the medical image with focus, and the speed had significant improvement compared with the method based on mutual information.

Key words: image segmentation, medical image, mean divergence, simulated annealing, similarity

[1] 王旭峰, 周迪,张风雷,宋雪萌,刘萌. 基于多粒度对齐网络的图像-文本匹配方法[J]. 山东大学学报 (工学版), 2025, 55(4): 29-39.
[2] 李军涛,茆俊亚,侯星星,郭文文. 基于能耗、碳排放油电车辆混合最优配置策略[J]. 山东大学学报 (工学版), 2025, 55(1): 15-23.
[3] 武凯丽,陈京荣. 基于节点重要性排序的局部社区检测算法[J]. 山东大学学报 (工学版), 2025, 55(1): 77-85.
[4] 刘全金,嵇文,胡浪涛,黄汇磊,杨瑞,李翔,高泽文,魏本征. 基于双解码器的医学图像分割模型[J]. 山东大学学报 (工学版), 2024, 54(6): 8-18.
[5] 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43.
[6] 高泽文,王建,魏本征. 基于混合偏移轴向自注意力机制的脑胶质瘤分割算法[J]. 山东大学学报 (工学版), 2024, 54(2): 80-89.
[7] 卞小曼,王小琴,蓝如师,刘振丙,罗笑南. 基于相似性保持和判别性分析的快速视频哈希算法[J]. 山东大学学报 (工学版), 2023, 53(6): 63-69.
[8] 董璐璐,宋金涛,魏伟波,潘振宽. 多相图像分割变分模型的标签函数提升方法[J]. 山东大学学报 (工学版), 2022, 52(4): 54-68.
[9] 郝晋一,李鹏程,黄艺美,李金屏. 基于穿线法的轮胎X光图像畸变检测[J]. 山东大学学报 (工学版), 2022, 52(3): 9-17.
[10] 黄彩云,陈德武,何吉福,胡艺,王楠,陈沛. 基于改进双路径网络的上肢肌肉骨骼异常检测[J]. 山东大学学报 (工学版), 2022, 52(3): 25-33.
[11] 霍兵强,周涛,陆惠玲,董雅丽,刘珊. 基于NRC和多模态残差神经网络的肺部肿瘤良恶性分类[J]. 山东大学学报 (工学版), 2020, 50(6): 59-67.
[12] 张文凯,禹可,吴晓非. 基于元图归一化相似性度量的实体推荐[J]. 山东大学学报 (工学版), 2020, 50(2): 66-75.
[13] 李英达,谢宗霞. 基于核相似性删减策略的支持向量回归算法[J]. 山东大学学报 (工学版), 2019, 49(3): 8-14.
[14] 董新宇,陈瀚阅,李家国,孟庆岩,邢世和,张黎明. 基于多方法融合的非监督彩色图像分割[J]. 山东大学学报 (工学版), 2019, 49(2): 96-101.
[15] 吴晨谋,方志军,黄正能. 基于单目摄像头的主动式驾驶行为分析算法[J]. 山东大学学报 (工学版), 2018, 48(5): 69-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[2] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[3] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[4] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[5] 刘忠国,张晓静,刘伯强,刘常春 . 视觉刺激间隔对大脑诱发电位的影响[J]. 山东大学学报(工学版), 2006, 36(3): 34 -38 .
[6] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .
[7] 夏 斌,张连俊 . DS-CDMA UWB系统中基于能量比较的TOA估计算法[J]. 山东大学学报(工学版), 2007, 37(1): 70 -73 .
[8] 薛强,艾兴,赵军,周咏辉,袁训亮 . 纳米TiC对Si3N4基复合陶瓷材料性能和微观结构的影响[J]. 山东大学学报(工学版), 2008, 38(3): 69 -72 .
[9] 罗运虎,邢丽冬,王勤,刘海春,翁晓光 . 需求侧2种可中断负荷备用市场报价策略的协调[J]. 山东大学学报(工学版), 2008, 38(3): 77 -80 .
[10] 徐晓丹, 段正杰, 陈中育. 基于扩展情感词典及特征加权的情感挖掘方法[J]. 山东大学学报(工学版), 2014, 44(6): 15 -18 .