您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (3): 37-50.

• 控制科学与工程 • 上一篇    下一篇

人机交互中基于可穿戴式计算的手势和活动辨识

盛卫华,祝纯   

  1. 俄克拉荷马州立大学电气与计算机学院,美国 俄克拉荷马州 止水市 74078 OK
  • 收稿日期:2009-12-28 出版日期:2010-06-16 发布日期:2009-12-28

A wearable computing approach for hand gesture and daily activity recognition in human-robot interaction

SHENG Wei-hua, ZHU Chun   

  1. School of Electrical and Computer Engineering,  Oklahoma State University, Stillwater, OK, 74078, USA
  • Received:2009-12-28 Online:2010-06-16 Published:2009-12-28
  • About author:SHENG Wei-hua(1972-),male,Ph.D.,assistant professor, his research interests include human robot interaction, wearable computing and mobile sensor networks. E-mail: weihua.sheng@okstate.edu ZHU Chun(1983-),female, Ph.D student, her research interests include human behavior recognition and human robot interaction. E-mail: chunz@okstate.edu
  • Supported by:

    This research was supported by NSF, USA

Abstract:

Human-robot interaction (HRI) is an important topic in robotics, especially in assistive robotics. In this paper, we addressed the HRI problem in a smart assisted living (SAIL) system for elderly people, patients, and the disabled. Two problems were sloved that are very important for developing natural HRI: hand gesture recognition and daily activity recognition. For the problem of hand gesture recognition, an inertial sensor is worn on a finger of the human subject to collect hand motion data. A neural network is used for gesture spotting and a two-layer hierarchical hidden Markov model (HHMM) is applied to integrate the context information in the gesture recognition. For the problem of daily activity recognition, two inertial sensors are attached to one foot and the waist of the subject. A multi-sensor fusion scheme was developed for recognition. First, data from these two sensors are fused for coarse-grained classification. Second, the fine-grained classification module based on heuristic discrimination or hidden Markov models (HMMs) are applied to further distinguish the activities. Experiments were conducted using a prototype wearable sensor system and the obtained results proved the effectiveness and accuracy of our algorithms.

Key words: human-robot interaction, hidden Markov model, neural networks

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[3] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[4] 王静,李玉江,张晓瑾, 毕研俊,陈位锁 . 粉煤灰去除水中活性紫KN-B[J]. 山东大学学报(工学版), 2006, 36(6): 100 -103 .
[5] 曲延鹏,陈颂英,李春峰,王小鹏,滕书格 . 低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J]. 山东大学学报(工学版), 2006, 36(4): 16 -20 .
[6] 李辉平, 赵国群, 张雷, 贺连芳. 超高强度钢板热冲压及模内淬火工艺的发展现状[J]. 山东大学学报(工学版), 2010, 40(3): 69 -74 .
[7] 胡天亮,李鹏,张承瑞,左毅 . 基于VHDL的正交编码脉冲电路解码计数器设计[J]. 山东大学学报(工学版), 2008, 38(3): 10 -13 .
[8] 张迎春 王佐勋 王桂娟. 基于神经网络控制器的高压电缆测温系统[J]. 山东大学学报(工学版), 2009, 39(5): 62 -67 .
[9] 赵勇 田四明 曹哲明. 宜万铁路复杂岩溶隧道施工地质工作方法[J]. 山东大学学报(工学版), 2009, 39(5): 91 -95 .
[10] 陈朋 胡文容 裴海燕. 一株反硝化细菌LZ-14的筛选及其脱氮特性[J]. 山东大学学报(工学版), 2009, 39(5): 133 -138 .