您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2026, Vol. 56 ›› Issue (1): 149-157.doi: 10.6040/j.issn.1672-3961.0.2024.228

• 电气工程 • 上一篇    

基于模态分析和PCA-WOA-RF的磨煤机下架体壳振预测

赵小惠1,刘磊1,蒲军平1,成小乐1,高畅2,胡胜1   

  1. 1.西安工程大学机电工程学院, 陕西 西安 710048;2.国能长源武汉青山热电有限公司, 湖北 武汉 430080
  • 发布日期:2026-02-03
  • 作者简介:赵小惠(1970— ),女,陕西西安人,教授,硕士生导师,博士,主要研究方向为智能制造系统理论及应用. E-mail: xhuizhao@xpu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(72001166);陕西省科技计划资助项目(2022JQ-721)

Prediction of shell vibration of coal mill lower frame body based on modal analysis and PCA-WOA-RF

ZHAO Xiaohui1, LIU Lei1, PU Junping1, CHENG Xiaole1, GAO Chang2, HU Sheng1   

  1. ZHAO Xiaohui1, LIU Lei1, PU Junping1, CHENG Xiaole1, GAO Chang2, HU Sheng1(1. School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China;
    2. Guoneng Changyuan Wuhan Qingshan Thermal Power Co., Ltd., Wuhan 430080, Hubei, China
  • Published:2026-02-03

摘要: 为探究磨煤机下架体壳振与其他运行参数之间的复杂非线性映射关系,并提高磨煤机下架体壳振预测的准确性,提出一种基于PCA-WOA-RF模型的磨煤机下架体壳振预测方法。对磨煤机下架体进行模态分析,验证下架体壳振标准值,使用Spearman相关系数法和主成分分析法(principal component analysis, PCA)对磨煤机工作数据进行相关性分析并提取主成分;以随机森林(random forest, RF)为预测模型结构基础,使用鲸鱼优化算法(whale optimization algorithm, WOA)对模型的超参数进行优化;以国能长源武汉青山热电有限公司磨煤机工作数据进行实例验证,并与PCA-BP、PCA-SVM和PCA-RF模型进行精度对比。结果表明:一次风流量、拉杆应变、磨煤机电机轴振动、中架体壳振、煤量和一次风出入口差压与磨煤机下架体壳振有显著相关性,经过主成分分析法提取的2个主成分方差贡献率达94.569%,所提出的PCA-WOA-RF模型平均预测误差最小,预测精度达到97.80%。该模型进一步提升了磨煤机下架体壳振预测精度。

关键词: 磨煤机, 下架体壳振, 主成分分析, 随机森林, 鲸鱼优化算法

Abstract: In order to investigate the complex nonlinear mapping relationship between the shell vibration of the lower frame body of the coal mill and other operating parameters, and to improve the accuracy of the prediction of the shell vibration of the lower frame body of the coal mill, a prediction method of the shell vibration of the lower frame body of the coal mill based on the PCA-WOA-RF model was proposed. Modal analysis was carried out on the lower frame body of the coal mill to verify the standard value of shell vibration of the lower frame body, correlation analysis was conducted on the working data of the coal mill using Spearman correlation coefficient method and principal component analysis(PCA)method and principal components were extracted. Random forests(RF)were used as the basis of the structure of the prediction model, and the hyperparameters of the model were optimised using whale optimisation algorithm(WOA). The coal mill working data of Guoneng Changyuan Wuhan Qingshan Thermal power Co., Ltd. was used as an example for validation, and the accuracy was compared with PCA-BP, PCA-SVM and PCA-RF models. The results showed that the primary air flow, tie rod strain, coal mill motor shaft vibration, mid-frame body shell vibration, coal volume and primary air inlet and outlet differential pressure were significantly correlated with the lower frame body shell vibration of the coal mill, the variance contribution of the two principal components extracted by principal component analysis was 94.569%, and the proposed PCA-WOA-RF model had the smallest average prediction error, and the prediction accuracy reached 97.80%. The model further improved the prediction accuracy of the shell vibration of the lower frame body of the coal mill.

Key words: coal mill, lower frame shell vibration, principal component analysis, Random Forest, whale optimization algorithm

中图分类号: 

  • TM621
[1] 刘会令. MPS190型磨煤机振动、漏风、减速机加热器问题的处理[J]. 中国新技术新产品, 2021(4): 64-66. LIU Huiling. Treatment of vibration, air leakage and heater of reducer of MPS190 coal mill[J]. New Technology & New Products of China, 2021(4): 64-66.
[2] 吴宏伦. ZGM95G中速磨煤机传动盘裙边的修复[J]. 江苏电机工程, 2010, 29(2): 61-63. WU Honglun. The repair of the skirt border of transmission tray of ZGM95G medium speed mill[J]. Jiangsu Electrical Engineering, 2010, 29(2): 61-63.
[3] 贾春梅. 中速磨煤机下架体泄漏分析及改造[J]. 科技与企业, 2013(17): 276-277. JIA Chunmei. Leakage analysis and transformation of lower frame of medium-speed coal mill [J]. Technology and Enterprise, 2013(17): 276-277.
[4] GAO Y K, ZENG D L, LIU J Z. Modeling of a medium speed coal mill[J]. Powder Technology, 2017, 318: 214-223.
[5] ZENG D L, HU Y, GAO S, et al. Modelling and control of pulverizing system considering coal moisture[J]. Energy, 2015, 80: 55-63.
[6] LI X W, WU Y C, CHEN H F, et al. Coal mill model considering heat transfer effect on mass equations with estimation of moisture[J]. Journal of Process Control, 2021, 104: 178-188.
[7] 王朝阳, 石慧, 王文毓, 等. MPS型磨煤机制粉系统动态模型与瞬态运行优化控制研究[J]. 中国电机工程学报, 2024, 44(16): 6518-6529. WANG Chaoyang, SHI Hui, WANG Wenyu, et al. Study on dynamic model and transient operation optimization control of the MPS coal mill pulverizing system[J]. Proceedings of the CSEE, 2024, 44(16): 6518-6529.
[8] 屈子尧, 陈敏, 姚啸林. 分离器转速对中速磨煤机风粉分配的影响[J]. 热力发电, 2024, 53(4): 141-149. QU Ziyao, CHEN Min, YAO Xiaolin. Influence of separator rotation speed on air-powder distribution in medium-speed coal pulverizer[J]. Thermal Power Generation, 2024, 53(4): 141-149.
[9] 丁皓轩, 李松山, 唐文, 等. 对冲燃烧锅炉两侧主蒸汽温度偏差的预测模型及问题诊断[J]. 锅炉技术, 2024, 55(2): 32-38. DING Haoxuan, LI Songshan, TANG Wen, et al. Prediction model and problem diagnosison main steam temperature deviation of opposed firing boiler [J]. Boiler Technology, 2024, 55(2): 32-38.
[10] 张志勇, 陆金桂, 张猛. 基于WOA-BP神经网络的磨煤机出粉量估算[J]. 电子测量技术, 2022, 45(22): 157-161. ZHANG Zhiyong,LU Jingui, ZHANG Meng. Estimation of powder output of coal mill based on WOA-BP neural network. Electronic Measurement Technology, 2022, 45(22): 157-161.
[11] 张坚群, 张新胜. 基于自适应递推最小二乘支持向量机的磨煤机一次风量软测量模型[J]. 热力发电, 2021, 50(11): 137-143. ZHANG Jianqun, ZHANG Xinsheng. Soft measurement model of primary air flow of coal mill based on self-adaptive recursive LSSVM[J]. Thermal Power Generation, 2021, 50(11): 137-143.
[12] 陈金楷, 夏季, 谭鹏, 等. 结合相空间重构和ELM的磨煤机振动软测量[J]. 热力发电, 2015, 44(3): 42-47. CHEN Jinkai, XIA Ji, TAN Peng, et al. Phase space reconstruction and ELM based soft measurement for vibration of a mill with multiple parameters and coal types[J]. Thermal Power Generation, 2015, 44(3): 42-47.
[13] 王辉, 邹智超, 李欣, 等. 基于VMD-ISSA-GRU组合模型的短期风电功率预测[J]. 热力发电, 2024, 53(5): 122-131. WANG Hui, ZOU Zhichao, LI Xin, et al. Short-term wind power prediction based on VMD-ISSA-GRU comprehensive model[J]. Thermal Power Generation, 2024, 53(5): 122-131.
[14] 李影, 卓建坤, 吴逸凡, 等. 可解释的变负荷下燃煤机组SCR反应器入口NOx质量浓度预测模型[J]. 热力发电, 2024, 53(7): 119-128. LI Ying, ZHUO Jiankun, WU Yifan, et al. Interpretable prediction model for NOx mass concentration at SCR reactor inlet in coal-fired power plants under flexible operating conditions[J]. Thermal Power Generation, 2024, 53(7): 119-128.
[15] 李静立, 王谦, 张军, 等. 基于阶次分析的风电机组在线模态参数识别与故障诊断[J]. 山东大学学报(工学版), 2017, 47(4): 96-102. LI Jingli, WANG Qian, ZHANG Jun, et al. Online modal parameter identification and fault diagnosis of wind turbines based on order analysis[J]. Journal of Shandong University(Engineering Science), 2017, 47(4): 96-102.
[16] 张海龙, 李雯, 张锋, 等. 中速磨煤机振动影响因素的研究[J]. 热力发电, 2023, 52(12): 190-197. ZHANG Hailong, LI Wen, ZHANG Feng, et al. Research on influence factors of vibration of medium speed coalpulverizers[J]. Thermal Power Generation, 2023, 52(12): 190-197.
[17] 吴军英, 路欣, 刘宏, 等. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. WU Junying, LU Xin, LIU Hong, et al. Ultra-short-term multi-region power load forecasting based on spearman-GCN-GRU model[J]. Electric Power, 2024, 57(6): 131-140.
[18] 孙东磊, 王艳, 于一潇, 等. 基于BP神经网络的短期光伏集群功率区间预测[J]. 山东大学学报(工学版), 2020, 50(5): 70-76. SUN Donglei, WANG Yan, YU Yixiao, et al. Interval prediction of short-term regional photovoltaic power based on BP neural network[J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 70-76.
[19] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[20] 李鸿钊, 张庆松, 刘人太, 等. 浅埋地铁车站施工期地表变形风险预警[J]. 山东大学学报(工学版), 2023, 53(6): 82-91. LI Hongzhao, ZHANG Qingsong, LIU Rentai,et al. Risk state early warning of the surface deformation of shallow buried subway station[J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 82-91.
[21] 尤勇, 孟云龙, 吴景涛, 等. 基于鲸鱼优化算法-支持向量回归的汽车运动状态估计[J]. 中国机械工程, 2024, 35(6): 973-981. YOU Yong, MENG Yunlong, WU Jingtao,et al. Vehicle motion state estimation based on WOA-SVR[J]. China Mechanical Engineering, 2024, 35(6): 973-981.
[22] 汤明, 王汉昌, 何世明, 等. 基于PCA-BP算法的机械钻速预测研究[J]. 石油机械, 2023, 51(10): 23-31. TANG Ming, WANG Hanchang, HE Shiming, et al. Prediction for rate of penetration based on PCA-BP algorithm[J]. China Petroleum Machinery, 2023, 51(10): 23-31.
[23] 杨文锋, 林德惠, 曹宇, 等. 基于PCA-SVM的飞机蒙皮激光分层除漆LIBS在线监测研究[J]. 光谱学与光谱分析, 2023, 43(12): 3891-3898. YANG Wenfeng, LIN Dehui, CAO Yu, et al. Study on LIBS online monitoring of aircraft skin laser layered paint removal based on PCA-SVM[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3891-3898.
[24] 何珂, 杨顺新, 郜勇刚. 基于PCA-RF组合模型的隧道交通事故持续时间预测[J]. 交通信息与安全, 2019, 37(5): 26-32. HE Ke, YANG Shunxin, GAO Yonggang. Prediction of traffic incident duration in tunnels based on a PCA-RF combined model[J]. Journal of Transport Information and Safety, 2019, 37(5): 26-32.
[25] 孙鸿昌, 周风余, 单明珠, 等. 基于模式划分的空调能耗混合填补方法[J]. 山东大学学报(工学版), 2022, 52(1): 9-18. SUN Hongchang, ZHOU Fengyu, SHAN Mingzhu, et al. Mode division based hybrid filling method of air conditioning energy consumption[J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 9-18.
[1] 鲁志恒,霍延强,韩汶,杜聪,刘轶鹏,张宏博. 基于图像数据和碎石集料级配与用量的碎石集料空隙率快速检测方法[J]. 山东大学学报 (工学版), 2024, 54(6): 89-99.
[2] 孙立刚,程鹏,李官鹏,祁金胜,辛公明,季万祥. 磨煤机前圆形风道新型均流装置的设计[J]. 山东大学学报 (工学版), 2023, 53(6): 152-156.
[3] 张斌,李官鹏,程鹏,李元鲁,辛公明,季万祥. 磨煤机前圆形一次风道均流设计和优化[J]. 山东大学学报 (工学版), 2023, 53(5): 142-148.
[4] 孟银凤,李庆方. 基于多元函数主成分表示的识别学习[J]. 山东大学学报 (工学版), 2022, 52(3): 1-8.
[5] 孟银凤,杨佳宇,曹付元. 函数型数据的分裂转移式层次聚类算法[J]. 山东大学学报 (工学版), 2022, 52(1): 19-27.
[6] 刘新锋, 张旖旎,徐惠三,宋玲,陈梦雅. 基于随机森林和专家系统的分布式光伏电站阴影遮挡诊断[J]. 山东大学学报 (工学版), 2021, 51(2): 98-104.
[7] 孙东磊,王艳,于一潇,韩学山,杨明,闫芳晴. 基于BP神经网络的短期光伏集群功率区间预测[J]. 山东大学学报 (工学版), 2020, 50(5): 70-76.
[8] 马相明,孙霞,张强. 轮式装载机典型作业工况构建与分析[J]. 山东大学学报 (工学版), 2015, 45(5): 82-87.
[9] 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76.
[10] 房晓南1,2,张化祥1,2*,高爽1,2. 基于SMOTE和随机森林的Web spam检测[J]. 山东大学学报(工学版), 2013, 43(1): 22-27.
[11] 刘海青,杨立才*,吴磊,孔璐璐. 基于Fuzzy-PCA的城市区域交通拥挤评价方法[J]. 山东大学学报(工学版), 2012, 42(6): 56-62.
[12] 翟俊海1,翟梦尧1,张素芳2,王熙照1. 基于小波子空间集成的人脸识别[J]. 山东大学学报(工学版), 2012, 42(2): 1-6.
[13] 颜子夜,陆耀,李建武,马跃. 一种基于核主成分分析的图像超分辨率算法[J]. 山东大学学报(工学版), 2011, 41(4): 101-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!