Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (5): 70-76.doi: 10.6040/j.issn.1672-3961.0.2019.706
SUN Donglei1, WANG Yan1, YU Yixiao2*, HAN Xueshan2, YANG Ming2, YAN Fangqing2
CLC Number:
[1] LIN You, YANG Ming, WAN Can, et al. A multi-model combination approach for probabilistic wind power forecasting[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 226-237. [2] YANG Ming, FAN Shu, LEE W J. Probabilistic short-term wind power forecast using componential sparse bayesian learning[J]. IEEE Transactions on Industry Applications, 2013, 49(6):2783-2792. [3] 赵争鸣,刘建政,孙晓英,等. 太阳能光伏发电其应用[M].北京:科学出版社, 2005. [4] 代倩, 段善旭, 蔡涛, 等. 基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究[J]. 中国电机工程学报, 2011, 31(34):28-35. DAI Qian, DUAN Shanxu, CAI Tao, et al. Short-term PV generation system forecasting model without irradiation based on weather type clustering[J]. Proceedings of the CSEE, 2011, 31(34): 28-35. [5] RANA Mashud, IRENA Koprinska, AGELIDIS Vassilios G. Univariate and multivariate methods for very short-term solar photovoltaic power forecasting[J]. Energy Conversion and Management, 2016, 121:380-390. [6] 赵唯嘉, 张宁, 康重庆, 等. 光伏发电出力的条件预测误差概率分布估计方法[J]. 电力系统自动化, 2015(16):8-15. ZHAO Weijia, ZHANG Ning, KANG Chongqing, et al. A method of probabilistic distribution estimation of conditional forecast error for photovoltaic power generation[J]. Automation of Electric Power Systems, 2015(16):8-15. [7] 黄磊, 舒杰, 姜桂秀, 等. 基于多维时间序列局部支持向量回归的微网光伏发电预测[J]. 电力系统自动化, 2014, 38(5):19-24. HUANG Lei, SHU Jie, JIANG Guixiu, et al. Photovoltaic generation forecast based on multidimensional time-series and local support vector regression in microgrids[J]. Automation of Electric Power Systems, 2014, 38(5):19-24. [8] 戴锦, 肖文波, 胡芳雨, 等. 光伏发电性能物理预测模型的研究[J]. 电源技术, 2018,42(2): 262-266. DAI Jin, XIAO Weibo, HU Fangyu, et al. Research of photovoltaic prediction model[J]. Power Supply Technology, 2018, 42(2): 262-266. [9] 王育飞, 付玉超, 孙路, 等. 基于混沌-RBF神经网络的光伏发电功率超短期预测模型[J]. 电网技术, 2018,42(4):1110-1116. WANG Yufei, FU Yuchao, SUN Lu, et al. Ultra-short term prediction model of photovoltaic output power based on chaos-RBF neural network[J]. Power System Technology, 2018, 42(4):1110-1116. [10] 茆美琴, 龚文剑, 张榴晨, 等. 基于EEMD-SVM方法的光伏电站短期出力预测[J]. 中国电机工程学报, 2013,33(34):17-24. MAO Meiqin, GONG Wenjian, ZHANG Liuchen, et al. Short-term photovoltaic generation forecasting based on EEMD-SVM combined method[J]. Proceedings of the CSEE, 2013, 33(34):17-24. [11] ALHAKEEM D, MANDAL P, HAQUE A U, et al. A new strategy to quantify uncertainties of wavelet-GRNN-PSO based solar PV power forecasts using bootstrap confidence intervals[C] //Power and Energy Society General Meeting. Denver, USA: IEEE, 2015. [12] TED Soubdhan, JOSEPH Ndong, HANANY Ould-Baba, et al. A robust forecasting framework based on the kalman filtering approach with a twofold parameter tuning procedure: application to solar and photovoltaic prediction[J]. Solar Energy, 2016, 131:246-259. [13] ZAMO M, MESTRE O, ARBOGAST P, et al. A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production: part II: probabilistic forecast of daily production[J]. Solar Energy, 2014, 105:804-816. [14] 颜伟, 任洲洋, 赵霞, 等. 光伏电源输出功率的非参数核密度估计模型[J]. 电力系统自动化, 2013, 37(10):35-40. YAN Wei, REN Zhouyang, ZHAO Xia, et al. Probabilistic photovoltaic power modeling based on nonparametric kernel density estimation[J]. Automation of Electric Power Systems, 2013, 37(10):35-40. [15] SCOLARI E, SOSSAN F, PAOLONE M. Irradiance prediction intervals for PV stochastic generation in microgrid applications[J]. Solar Energy, 2016, 139:116-129. [16] 殷豪, 陈云龙, 孟安波, 等. 基于模糊信息粒化的光伏出力区间预测[J]. 电测与仪表, 2017, 55(14): 39-44. YIN Hao, CHEN Yunlong, MENG Anbo, et al. PV power interval prediction based on fuzzy information granulation[J]. Electrical Measurement & Instrumentation, 2017, 55(14): 39-44. [17] 谭津, 邓长虹, 杨威, 等. 微电网光伏发电的Adaboost天气聚类超短期预测方法[J]. 电力系统自动化, 2017(21):39-45. TAN Jin, DENG Changhong, YANG Wei, et al. Ultra-short-term photovoltaic power forecasting in microgrid based on adaboost clustering[J]. Automation of Electric Power Systems, 2017(21):39-45. [18] DOLARA A, LEVA S, MANZOLINI G. Comparison of different physical models for PV power output prediction[J]. Solar Energy, 2015, 119: 83-99. [19] URQUHART B, KURTZ B, DAHLIN E, et al. Development of a sky imaging system for short-term solar power forecasting[J]. Atmospheric Measurement Techniques, 2015, 8(2):875-890. [20] 董雷, 周文萍, 张沛, 等. 基于动态贝叶斯网络的光伏发电短期概率预测[J]. 中国电机工程学报, 2013, 33(增刊):38-45. DONG Lei, ZHOU Wenping, ZHANG Pei, et al. Short-term photovoltaic output forecast based on dynamic Bayesian network theory[J]. Proceedings of the CESS, 2013, 33(Suppl.):38-45. [21] 朱雪龙. 应用信息论基础[M]. 北京:清华大学出版社, 2001. |
[1] | Baoming JIN,Guangyi LU,Wei WANG,Lunyue DU. Research on BP neural network rainfall runoff forecasting model based on elastic gradient descent algorithm [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 117-124. |
[2] | Diankun ZHENG,Tongle XU,Zhaojie YIN,Qingmin MENG. Prediction method of tailing dam groundwater levels based on improved PSO-BP neural network [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 108-113. |
[3] | QIAN Wenguang, LI Huimin. A similarity subspace embedding algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 8-14. |
[4] | YANG Yawei, SONG Bing, SHI Hongbo. Chemical process monitoring based on two step subspace division [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 110-117. |
[5] | ZHANG Yuling, YIN Chuanhuan. Android malware detection based on SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 42-47. |
[6] | LIU Jie, YANG Peng, LYU Wensheng, LIU Agudamu, LIU Junxiu. Prediction models of PM2.5 mass concentration based on meteorological factors [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 76-83. |
[7] | MA Xiangming, SUN Xia, ZHANG Qiang. Construction and analysis on typical working cycle of wheel loader [J]. Journal of Shandong University(Engineering Science), 2015, 45(5): 82-87. |
[8] | LI Faquan, YANG Licai, YAN Hongbo. An emotion recognition method of multiphysiological information fusion based on PCA-SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 70-76. |
[9] | LIU Lijun1, MA Yumei1, MENG Jiana2. Adaptive dual learning algorithm for principal (minor) component analysis along geodesic on Stiefel manifold [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 1-5. |
[10] | ZHANG Guo-dong1,2, ZHANG Hua-xiang1,2*. Text categorization algorithm based on non-linear manifold learning and k-NN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 28-33. |
[11] | LIU Hai-qing, YANG Li-cai*, WU Lei, KONG Lu-lu. Regional traffic congestion evaluation based on Fuzzy-PCA [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 56-62. |
[12] | ZHANG Yong-jun1, LIU Jin-ling2, YU Chang-hui3. A spam short message classification method based on word contribution [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 87-90. |
[13] | DING Yan, LI Yong-zhong*. Research on intrusion detection algorithm based on PCA and semisupervised clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 41-46. |
[14] | SUN Jing-jie1, ZHAO Jian-jun2*, YAO Yue-ting3, YAO Gang1. Improved RPCA method based on variable forgetting factor and its application in adaptive fault monitoring [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 60-66. |
[15] | ZHAI Jun-hai1, ZHAI Meng-yao1, ZHANG Su-fang2, WANG Xi-zhao1. Face recognition based on ensemble of wavelet subspaces [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 1-6. |
|