您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (5): 1-17.doi: 10.6040/j.issn.1672-3961.0.2024.115

• 电气工程——智慧能源专题 •    

人工智能在电力系统潮流计算中的应用综述及展望

李常刚1,李宝亮1,曹永吉2*,王佳颖3   

  1. 1.电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061;2.山东大学智能创新研究院, 山东 济南 250101;3.国网浙江省电力有限公司营销服务中心, 浙江 杭州 311121)〓〓李常刚, 1984年11月出生, 博士, 教授, 博士生导师, 齐鲁青年学者, 电网智能化调度与控制教育部重点实验室副主任。主要从事电力系统运行与控制研究。中国电工技术学会高级会员, 青年工作委员会委员, 中国电机工程学会会员, IEEE会员, IEEE PES济南分会秘书长, IEEE PES(中国)电力系统动态技术委员会交直流混联电网安全稳定分析分委会秘书长。主持国家级重点项目1项、一般项目4项, 开发大规模交直流混联电力系统仿真软件STEPS并开源, 以一作/通信作者发表SCI/EI期刊论文40余篇, 授权发明专利15项, 获山东省科技进步奖二等奖3项、中国电力企业联合会电力创新奖一等奖1项、中国电力科技进步奖一等奖2项、山东电力科技进步奖一等奖1项等。
  • 发布日期:2025-10-17
  • 作者简介:李常刚(1984— ),男,山东日照人,教授,博士生导师,博士,主要研究方向为电力系统运行与控制. E-mail: lichgang@sdu.edu.cn. *通信作者简介:曹永吉(1992— ),男,山东青州人,副研究员,硕士生导师,博士,主要研究方向为电力系统稳定分析与控制、可再生能源并网及储能技术应用. E-mail: yongji@sdu.edu.cn
  • 基金资助:
    智能电网重大专项(2030)资助项目(2024200801100);山东省自然科学基金资助项目(ZR2021QE133)

Review and prospect on artificial intelligence application in power system power flow calculation

LI Changgang1, LI Baoliang1, CAO Yongji2*, WANG Jiaying3   

  1. LI Changgang1, LI Baoliang1, CAO Yongji2*, WANG Jiaying3(1. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China;
    2. Academy of Intelligent Innovation, Shandong University, Jinan 250101, Shandong, China;
    3. State Grid Zhejiang Marketing Service Center, Hangzhou 311121, Zhejiang, China
  • Published:2025-10-17

摘要: 以深度学习为代表的新一代人工智能技术为新型电力系统的数智化运行提供新机遇。为深化人工智能在复杂潮流计算问题中的应用,对相关领域的研究进行综述与展望。基于新一代人工智能技术的发展现状,立足于潮流计算问题的不同应用场景,总结传统求解方法,综述人工智能技术在潮流计算中的研究进展。分析该领域目前的问题与挑战,展望未来研究方向和研究范式,为人工智能技术在电力系统潮流计算领域的进一步应用提供参考。

关键词: 潮流计算, 人工智能, 深度学习, 数智化运行, 新型电力系统

Abstract: The new-generation artificial intelligence technologies, represented by deep learning, provided new opportunities for the digital and intelligent operation of new power systems. To deepen the understanding of the application of artificial intelligence in complex power flow calculation problems, the review and prospect of research in relevant fields were presented. Based on the current development status of the new-generation artificial intelligence technologies and grounded in power flow calculation with various scenarios, the traditional methods were summarized and the research progress of artificial intelligence techniques in power flow calculation was reviewed. The urgent challenges were analyzed and future research directions were envisioned to provide references for further applications of artificial intelligence technologies in the field of power flow calculation.

Key words: power flow calculation, artificial intelligence, deep learning, digital and intelligent operation, new power systems

中图分类号: 

  • TM71
[1] 曹永吉, 张恒旭, 施啸寒, 等. 规模化分布式能源参与大电网安全稳定控制的机制初探[J]. 电力系统自动化, 2021, 45(18): 1-8. CAO Yongji, ZHANG Hengxu, SHI Xiaohan, et al. Preliminary study on participation mechanism of large-scale distributed energy resource in security and stability control of large power grid[J]. Automation of Electric Power Systems, 2021, 45(18): 1-8.
[2] LI P H, WU W C, WANG X M, et al. A data-driven linear optimal power flow model for distribution networks[J]. IEEE Transactions on Power Systems, 2022, 38(1): 956-959.
[3] FAN Z X, YANG Z F, YU J, et al. Minimize linearization error of power flow model based on optimal selection of variable space[J]. IEEE Transactions on Power Systems, 2021, 36(2): 1130-1140.
[4] 张恒旭, 高志民, 曹永吉, 等. 高比例可再生能源接入下电力系统惯量研究综述及展望[J]. 山东大学学报(工学版), 2022, 52(5): 1-13. ZHANG Hengxu, GAO Zhimin, CAO Yongji, et al. Review and prospect of research on power system inertia with high penetration of renewable energy source[J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 1-13.
[5] 张亚平, 马唯婧, 张宸硕, 等. 基于图像识别与CAE仿真技术的输变电塔一体化分析[J]. 山东大学学报(工学版), 2023, 53(6): 122-130. ZHANG Yaping, MA Weijing, ZHANG Chenshuo, et al. Integrated analysis of transmission and transformation towers based on image recognition and CAE simulation technology[J]. Journal of Shandong University(Engi-neering Science), 2023, 53(6): 122-130.
[6] 李兴华. 基于规则的电力系统潮流自动调整研究[D]. 武汉: 华中科技大学, 2007. LI Xinghua. Research on auto adiustment in power flow based on rule[D]. Wuhan: Huazhong University of Science and Technology, 2007.
[7] 张恒旭, 曹永吉, 张怡, 等. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报(工学版), 2021, 51(5): 42-52. ZHANG Hengxu, CAO Yongji, ZHANG Yi, et al. Review of frequency dynamic behavior evolution and analysis method requirements of power system[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 42-52.
[8] GAO Q, YANG Z F, YU J, et al. Model-driven architecture of extreme learning machine to extract power flow features[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10): 4680-4690.
[9] KHODAYAR M, LIU G Y, WANG J H, et al. Deep learning in power systems research: a review[J]. CSEE Journal of Power and Energy Systems, 2021, 7(2): 209-220.
[10] ZHANG Y, SHI X H, ZHANG H X, et al. Review on deep learning applications in frequency analysis and control of modern power system[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107744.
[11] 余涛, 周斌, 甄卫国. 强化学习理论在电力系统中的应用及展望[J]. 电力系统保护与控制, 2009, 37(14): 122-128. YU Tao, ZHOU Bin, ZHEN Weiguo. Application and development of reinforcement learning theory in power systems[J]. Power System Protection and Control, 2009, 37(14): 122-128.
[12] ROTHMANN M, PORRMANN M. A survey of domain-specific architectures for reinforcement learning[J]. IEEE Access, 2022, 10: 13753-13767.
[13] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[14] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[15] LIAO S, LI S B, LIU J Y, et al. A zeroing neural dynamics based acceleration optimization approach for optimizers in deep neural networks[J]. Neural Networks, 2022, 150: 440-461.
[16] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
[17] WANG X P. Research and optimization of BP neural network algorithm[C] //2015 Seventh International Conference on Measuring Technology and Mechatronics Automation. Nanchang, China: IEEE, 2015: 818-822.
[18] PEI X J, TIAN S W, YU L, et al. A two-stream network based on capsule networks and sliced recurrent neural networks for DGA botnet detection[J]. Journal of Network and Systems Management, 2020, 28(4): 1694-1721.
[19] HUANG Z L, YANG F F, XU F, et al. Convolutional gated recurrent unit-recurrent neural network for state-of-charge estimation of lithium-ion batteries[J]. IEEE Access, 2019, 7: 93139-93149.
[20] DING S Y, WANG Z J, KONG W J, et al. Electrode regulating system modeling in electrical smelting furnace using recurrent neural network with attention mechanism[J]. Neurocomputing, 2019, 359: 32-40.
[21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[22] WANG Z, ZHENG X, LI D Y, et al. A VGGNet-like approach for classifying and segmenting coal dust particles with overlapping regions[J]. Computers in Industry, 2021, 132: 103506.
[23] SHEHAB L H, FAHMY O M, GASSER S M, et al. An efficient brain tumor image segmentation based on deep residual networks(ResNets)[J]. Journal of King Saud University-Engineering Sciences, 2021, 33(6): 404-412.
[24] LIAO T T, LI L, OUYANG R S, et al. Classification of asymmetry in mammography via the DenseNet convolutional neural network[J]. European Journal of Radiology Open, 2023, 11: 100502.
[25] CHENG X R, CUI B J, HOU S Z. Fault line selection of distribution network based on modified CEEMDAN and GoogLeNet neural network[J]. IEEE Sensors Journal, 2022, 22(13): 13346-13364.
[26] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[27] LU W, JIANG N, JIN D, et al. Learning distinct relationship in package recommendation with graph attention networks[J]. IEEE Transactions on Com-putational Social Systems, 2023, 10(6): 3308-3320.
[28] CHEN C C, LI Q, CHEN L, et al. An improved GraphSAGE to detect power system anomaly based on time-neighbor feature[J]. Energy Reports, 2023, 9: 930-937.
[29] YAO X, ZHU H Y, GU M. Brain-inspired GCN: modularity-based Siamese simple graph convolutional networks[J]. Information Sciences, 2024, 657: 119971.
[30] TIAN J, LI P. An intrusion detection algorithm of dynamic recursive deep belief networks[C] //Proceedings of the 2017 International Conference on Information Technology. Singapore: ACM, 2017: 180-183.
[31] DONG Q L, GE F F, NING Q, et al. Modeling hierarchical brain networks via volumetric sparse deep belief network[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(6): 1739-1748.
[32] WANG G M, QIAO J F, BI J, et al. TL-GDBN: growing deep belief network with transfer learning[J]. IEEE Transactions on Automation Science and Engi-neering, 2019, 16(2): 874-885.
[33] FEI R, SHA J Y, XU Q Z, et al. A new deep sparse autoencoder for community detection in complex networks[J]. EURASIP Journal on Wireless Communi-cations and Networking, 2020, 2020: 91.
[34] KINGMA D P, WELLING M. An introduction to variational autoencoders[J]. Foundations and Trends© in Machine Learning, 2019, 12(4): 307-392.
[35] DIALLO B, HU J, LI T R, et al. Deep embedding clustering based on contractive autoencoder[J]. Neuro-computing, 2021, 433: 96-107.
[36] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful repre-sentations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11: 3371-3408.
[37] 赵婷婷, 孔乐, 韩雅杰, 等. 模型化强化学习研究综述[J]. 计算机科学与探索, 2020, 14(6): 918-927. ZHAO Tingting, KONG Le, HAN Yajie, et al. Review of model-based reinforcement learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 918-927.
[38] MA Y, CHANG T Q, FAN W H. A single-task and multi-decision evolutionary game model based on multi-agent reinforcement learning[J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 642-657.
[39] CHEN X, LI Z, WANG K, et al. MDP-based network selection with reward optimization in HetNets[J]. Chinese Journal of Electronics, 2018, 27(1): 183-190.
[40] YANG Y, LI J T, PENG L L. Multi-robot path planning based on a deep reinforcement learning DQN algorithm[J]. CAAI Transactions on Intelligence Technology, 2020, 5(3): 177-183.
[41] YUAN H, NI J, HU J B. A centralised training algorithm with D3QN for scalable regular unmanned ground vehicle formation maintenance[J]. IET Intelli-gent Transport Systems, 2021, 15(4): 562-572.
[42] XU W F, LI Y H, PEI B B, et al. Coordinated intelligent control of the flight control system and shape change of variable sweep morphing aircraft based on dueling-DQN[J]. Aerospace Science and Technology, 2022, 130: 107898.
[43] PAN J, WANG X S, CHENG Y H, et al. Multisource transfer double DQN based on actor learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6): 2227-2238.
[44] LIU X H, ZHANG H W, DONG S Q, et al. Network defense decision-making based on a stochastic game system and a deep recurrent Q-network[J]. Computers & Security, 2021, 111: 102480.
[45] WU J L, WU Q M J, CHEN S Y, et al. A-TD3: an adaptive asynchronous twin delayed deep deterministic for continuous action spaces[J]. IEEE Access, 2022, 10: 128077-128089.
[46] HUO W W, ZHAO T Y, YANG F, et al. An improved soft actor-critic based energy management strategy of fuel cell hybrid electric vehicle[J]. Journal of Energy Storage, 2023, 72: 108243.
[47] MENG W J, ZHENG Q, SHI Y, et al. An off-policy trust region policy optimization method with monotonic improvement guarantee for deep reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5): 2223-2235.
[48] TANG C Y, LIU C H, CHEN W K, et al. Implementing action mask in proximal policy optimization(PPO)algorithm[J]. ICT Express, 2020, 6(3): 200-203.
[49] TAN C D, WANG C Q, TIAN J J, et al. Optimization of profile control and oil displacement scheme parameters based on deep deterministic policy gradient[J]. ACS Omega, 2023, 8(26): 23739-23753.
[50] SHEN H, ZHANG K Q, HONG M Y, et al. Towards understanding asynchronous advantage actor-critic: convergence and linear speedup[J]. IEEE Transactions on Signal Processing, 2023, 71: 2579-2594.
[51] JIN Z H, WU J H, LIU A D, et al. Policy-based deep reinforcement learning for visual servoing control of mobile robots with visibility constraints[J]. IEEE Transactions on Industrial Electronics, 2021, 69(2): 1898-1908.
[52] JI Y, YUAN J, QIAN J F, et al. Power flow calculation in smart distribution network based on power machine learning based on fractional differential equations[J]. Applied Mathematics and Nonlinear Sciences, 2023, 8(1): 1037-1044.
[53] 彭慧敏, 袁虎玲, 鲍颜红, 等. 大电网病态潮流的识别和修正方法[J]. 电力系统保护与控制, 2018, 46(22): 116-123. PENG Huimin, YUAN Huling, BAO Yanhong, et al. Identification and correction method for ill-conditioned power flow of large scale network[J]. Power System Protection and Control, 2018, 46(22): 116-123.
[54] 安军, 宋俊达, 葛维春. 大规模电力系统潮流计算收敛性诊断与调整方法[J]. 电力自动化设备, 2020, 40(2): 103-109. AN Jun, SONG Junda, GE Weichun. Convergence identification and adjustment method of power flow calculation for large-scale power system[J]. Electric Power Automation Equipment, 2020, 40(2): 103-109.
[55] KARIMI M, SHAHRIARI A, AGHAMOHAMMADI M R, et al. Application of Newton-based load flow methods for determining steady-state condition of well and ill-conditioned power systems: a review[J]. International Journal of Electrical Power & Energy Systems, 2019, 113: 298-309.
[56] CAO Y J, ZHANG Y, ZHANG H X, et al. Probabilistic optimal PV capacity planning for wind farm expansion based on NASA data[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1291-1300.
[57] 朱星阳, 刘文霞, 张建华, 等. 电力系统随机潮流及其安全评估应用研究综述[J]. 电工技术学报, 2013, 28(10): 257-270. ZHU Xingyang, LIU Wenxia, ZHANG Jianhua, et al. Reviews on power system stochastic load flow and its applications in safety evaluation[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 257-270.
[58] RAMADHANI U H, SHEPERO M, MUNKHAMMAR J, et al. Review of probabilistic load flow approaches for power distribution systems with photovoltaic generation and electric vehicle charging[J]. International Journal of Electrical Power & Energy Systems, 2020, 120: 106003.
[59] DE MEL I, KLYMENKO O V, SHORT M. Balancing accuracy and complexity in optimisation models of distributed energy systems and microgrids with optimal power flow: a review[J]. Sustainable Energy Tech-nologies and Assessments, 2022, 52: 102066.
[60] YANG Z F, ZHONG H W, XIA Q, et al. Fundamental review of the OPF problem: challenges, solutions, and state-of-the-art algorithms[J]. Journal of Energy Engineering, 2018, 144(1): 04017075.
[61] YU Z, BAO Y Q. Data-driven power flow calculation based on deep learning[C] //2021 IEEE 5th Conference on Energy Internet and Energy System Integration(EI2). Taiyuan, China: IEEE, 2021: 3230-3234.
[62] 杨梅, 刘俊勇, 刘挺坚, 等. 节点图和边图切换卷积驱动的快速静态安全分析方法[J]. 电网技术, 2021, 45(6): 2070-2080. YANG Mei, LIU Junyong, LIU Tingjian, et al. Switching convolution of node graph and line graph-driven method for fast static security analysis[J]. Power System Technology, 2021, 45(6): 2070-2080.
[63] VYAKARANAM B, MAHAPATRA K, LI X Y, et al. Novel data-driven distributed learning framework for solving AC power flow for large interconnected systems[J]. IEEE Open Access Journal of Power and Energy, 2021, 8: 281-292.
[64] XU H, YU Z, ZHENG Q, et al. Improved deep reinforcement learning based convergence adjustment method for power flow calculation[C] //The 16th IET International Conference on AC and DC Power Transmission(ACDC 2020). [S.l.] : IET, 2020: 1898-1903.
[65] 王甜婧, 汤涌, 郭强, 等. 基于知识经验和深度强化学习的大电网潮流计算收敛自动调整方法[J]. 中国电机工程学报, 2020, 40(8): 2396-2406. WANG Tianjing, TANG Yong, GUO Qiang, et al. Automatic adjustment method of power flow calculation convergence for large-scale power grid based on knowledge experience and deep reinforcement learning[J]. Proceedings of the CSEE, 2020, 40(8): 2396-2406.
[66] 郑清平. 基于深度强化学习的电网断面功率调整研究[D]. 北京: 北京邮电大学, 2021. ZHENG Qingping. Research on tie-line power of grid adjustment based on deep reinforcement learning[D]. Beijing: Beijing University of Posts and Telecom-munications, 2021.
[67] WANG T J, TANG Y. An unsolvable power flow adjustment method for weak power grid based on transmission channel positioning and deep reinforcement learning[J]. Electric Power Systems Research, 2022, 210: 108050.
[68] PU T J, WANG X Y, CAO Y F, et al. Power flow adjustment for smart microgrid based on edge computing and multi-agent deep reinforcement learning[J]. Journal of Cloud Computing, 2021, 10(1): 48.
[69] 杨晓东, 严剑峰, 刘佳霖. 结合深度强化学习与人工经验的电网输电断面功率调整方法[J]. 电力系统自动化, 2023, 47(15): 133-141. YANG Xiaodong, YAN Jianfeng, LIU Jialin. Power adjustment method for transmission section in power grid combining deep reinforcement learning and artificial experience[J]. Automation of Electric Power Systems, 2023, 47(15): 133-141.
[70] XU H T, YU Z H, ZHENG Q P, et al. Deep reinforcement learning-based tie-line power adjustment method for power system operation state calculation[J]. IEEE Access, 2019, 7: 156160-156174.
[71] 余娟, 杨燕, 杨知方, 等. 基于深度学习的概率能量流快速计算方法[J]. 中国电机工程学报, 2019, 39(1): 22-30. YU Juan, YANG Yan, YANG Zhifang, et al. Fast probabilistic energy flow analysis based on deep learning[J]. Proceedings of the CSEE, 2019, 39(1): 22-30.
[72] WANG D W, ZHENG K D, CHEN Q X, et al. A data-driven probabilistic power flow method based on convolutional neural networks[J]. International Tran-sactions on Electrical Energy Systems, 2020, 30(7): e12367.
[73] SONG S, JUNG Y, HAN C, et al. Recurrent neural-network-based maximum frequency deviation prediction using probability power flow dynamic tool[J]. IEEE Access, 2020, 8: 182054-182064.
[74] XIAO H, PEI W, WU L, et al. A novel deep learning based probabilistic power flow method for multi-microgrids distribution system with incomplete network information[J]. Applied Energy, 2023, 335: 120716.
[75] WU H Y, WANG M H, XU Z, et al. Graph attention enabled convolutional network for distribution system probabilistic power flow[J]. IEEE Transactions on Industry Applications, 2022, 58(6): 7068-7078.
[76] 白洁, 王守相, 赵倩宇, 等. 考虑风电出力不确定性的配电网概率潮流计算[J]. 电力系统及其自动化学报, 2021, 33(1): 78-84. BAI Jie, WANG Shouxiang, ZHAO Qianyu, et al. Probabilistic load flow calculation for distribution network considering uncertainties in wind power output[J]. Proceedings of the CSU-EPSA, 2021, 33(1): 78-84.
[77] 蔡新雷, 董锴, 崔艳林, 等. 基于长短期记忆网络的电网概率潮流计算及态势感知[J]. 电子器件, 2022, 45(4): 939-946. CAI Xinlei, DONG Kai, CUI Yanlin, et al. Probabilistic power flow calculation and situation awareness based on long short term memory network[J]. Chinese Journal of Electron Devices, 2022, 45(4): 939-946.
[78] WU H Y, WANG M H, XU Z, et al. Probabilistic power flow of distribution system based on a graph-aware deep learning network[C] //2021 IEEE/IAS Industrial and Commercial Power System Asia(I&CPS Asia). Chengdu, China: IEEE, 2021: 105-109.
[79] DONG Z H, HOU K, LIU Z Y, et al. A sample-efficient OPF learning method based on annealing knowledge distillation[J]. IEEE Access, 2022, 10: 99724-99733.
[80] ZHOU M, CHEN M H, LOW S H. DeepOPF-FT: one deep neural network for multiple AC-OPF problems with flexible topology[J]. IEEE Transactions on Power Systems, 2023, 38(1): 964-967.
[81] SU Q G, KHAN H U, KHAN I, et al. An optimized algorithm for optimal power flow based on deep learning[J]. Energy Reports, 2021, 7: 2113-2124.
[82] JIA Y J, BAI X Q, ZHENG L Q, et al. ConvOPF-DOP: a data-driven method for solving AC-OPF based on CNN considering different operation patterns[J]. IEEE Transactions on Power Systems, 2023, 38(1): 853-860.
[83] LI H, LI H J, LU W H, et al. Optimal power flow calculation considering large-scale photovoltaic genera-tion correlation[J]. Frontiers in Energy Research, 2020, 8: 590418.
[84] LAN T, DUAN J J, ZHANG B, et al. AI-based autonomous line flow control via topology adjustment for maximizing time-series ATCs[C] //2020 IEEE Power & Energy Society General Meeting(PESGM). Montreal, Canada: IEEE, 2020: 1-5.
[85] ZHOU Y H, ZHANG B, XU C L, et al. A data-driven method for fast AC optimal power flow solutions via deep reinforcement learning[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(6): 1128-1139.
[86] YAN Z M, XU Y. A hybrid data-driven method for fast solution of security-constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2022, 37(6): 4365-4374.
[87] SAYED A R, WANG C, ANIS H I, et al. Feasibility constrained online calculation for real-time optimal power flow: a convex constrained deep reinforcement learning approach[J]. IEEE Transactions on Power Systems, 2023, 38(6): 5215-5227.
[88] SUN B W, SONG M G, LI A, et al. Multi-objective solution of optimal power flow based on TD3 deep reinforcement learning algorithm[J]. Sustainable Energy, Grids and Networks, 2023, 34: 101054.
[89] 余涛, 刘靖, 胡细兵. 基于分布式多步回溯Q(λ)学习的复杂电网最优潮流算法[J]. 电工技术学报, 2012, 27(4): 185-192. YU Tao, LIU Jing, HU Xibing. Optimal power flow for complex power grid using distributed multi-step backtrack Q(λ)learning[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 185-192.
[90] 摆世彬, 严明辉, 徐伟, 等. 含大规模风电集群电网的在线计算数据生成技术[J]. 电力系统保护与控制, 2021, 49(3): 66-73. BAI Shibin, YAN Minghui, XU Wei, et al. An online calculation data generation technology for a power grid integrated with a large-scale wind farm[J]. Power System Protection and Control, 2021, 49(3): 66-73.
[91] DU Z M, CHEN K, CHEN S L, et al. Deep learning GAN-based data generation and fault diagnosis in the data center HVAC system[J]. Energy and Buildings, 2023, 289: 113072.
[92] LIU X L, SHEN F R, ZHAO J, et al. AugRmixAT: a data processing and training method for improving multiple robustness and generalization performance[C] //2022 IEEE International Conference on Multi-media and Expo(ICME). Taipei, China: IEEE, 2022: 1-6.
[93] MOHAMMED A, KORA R. A comprehensive review on ensemble deep learning: opportunities and challenges[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(2): 757-774.
[94] WANG W P, WANG Z R, ZHOU Z F, et al. Anomaly detection of industrial control systems based on transfer learning[J]. Tsinghua Science and Technology, 2021, 26(6): 821-832.
[95] 陈祎鹏, 杨哲, 谷飞, 等. 一种基于博弈论的移动边缘计算资源分配策略[J]. 计算机科学, 2023, 50(2): 32-41. CHEN Yipeng, YANG Zhe, GU Fei, et al. Resource allocation strategy based on game theory in mobile edge computing[J]. Computer Science, 2023, 50(2): 32-41.
[96] HUSSAIN H, MALIK S U R, HAMEED A, et al. A survey on resource allocation in high performance distributed computing systems[J]. Parallel Computing, 2013, 39(11): 709-736.
[97] YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Tran-sactions on Intelligent Systems and Technology, 2019, 10(2): 12.
[98] 成科扬, 王宁, 师文喜, 等. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217. CHENG Keyang, WANG Ning, SHI Wenxi, et al. Research advances in the interpretability of deep learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217.
[1] 周群颖,隋家成,张继,王洪元. 基于自监督卷积和无参数注意力机制的工业品表面缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 40-47.
[2] 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79.
[3] 薛冰冰,王勇,杨维浩,王川,于迪,王旭. 基于ETC收费数据的高速公路交通流数据修复及实时预测[J]. 山东大学学报 (工学版), 2025, 55(3): 58-71.
[4] 张恒旭,马睿聪,曹永吉,刘奕敏,邹世豪. 新型电力系统同步稳定研究综述及展望[J]. 山东大学学报 (工学版), 2025, 55(2): 1-15.
[5] 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12.
[6] 索大翔,李波. 基于Gromov-Wasserstein最优传输的输电线路小目标检测方法[J]. 山东大学学报 (工学版), 2024, 54(3): 22-29.
[7] 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63.
[8] 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43.
[9] 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11.
[10] 高泽文,王建,魏本征. 基于混合偏移轴向自注意力机制的脑胶质瘤分割算法[J]. 山东大学学报 (工学版), 2024, 54(2): 80-89.
[11] 李璐,张志军,范钰敏,王星,袁卫华. 面向冷启动用户的元学习与图转移学习序列推荐[J]. 山东大学学报 (工学版), 2024, 54(2): 69-79.
[12] 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪[J]. 山东大学学报 (工学版), 2024, 54(1): 100-108.
[13] 李家春,李博文,常建波. 一种高效且轻量的RGB单帧人脸反欺诈模型[J]. 山东大学学报 (工学版), 2023, 53(6): 1-7.
[14] 王旭晴,魏伟波,杨光宇,宋金涛,吕婷,潘振宽. 基于算法展开的图像盲去模糊深度学习网络[J]. 山东大学学报 (工学版), 2023, 53(6): 35-46.
[15] 王碧瑶,韩毅,崔航滨,刘毅超,任铭然,高维勇,陈姝廷,刘嘉巍,崔洋. 基于图像的道路语义分割检测方法[J]. 山东大学学报 (工学版), 2023, 53(5): 37-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!