您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (5): 18-29.doi: 10.6040/j.issn.1672-3961.0.2024.163

• 电气工程——智慧能源专题 • 上一篇    下一篇

计及气-热网络动态特性的多能耦合系统鲁棒机组组合模型

张玉敏1,李竞锐1,杨明2,吉兴全1*,孙东磊3,徐波4,吴福成5   

  1. 1.山东科技大学电气与自动化工程学院, 山东 青岛 266590;2.电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061;3.国网山东省电力公司经济技术研究院, 山东 济南 250021;4.电力规划总院有限公司, 北京 100120;5.国网山东省电力公司诸城市供电公司, 山东 诸城 262299
  • 出版日期:2025-10-20 发布日期:2025-10-17
  • 作者简介:张玉敏(1986— ),女,山东德州人,副教授,硕士生导师,博士,主要研究方向为电力系统运行与控制. E-mail: ymzhang2019@sdust.edu.cn. *通信作者简介:吉兴全(1970— ),男,山东潍坊人,教授,博士生导师,博士,主要研究方向为配电网优化. E-mail: xqji@sdust.edu.cn
  • 基金资助:
    国家自然科学基金青年资助项目(52107111);中国博士后面上资助项目(2023M734092);山东省自然科学基金资助项目(ZR2022ME219,ZR2021QE117)

Robust unit commitment model with multi-energy coupled system considering gas-heat network dynamics

ZHANG Yumin1, LI Jingrui1, YANG Ming2, JI Xingquan1*, SUN Donglei3, XU Bo4, WU Fucheng5   

  1. ZHANG Yumin1, LI Jingrui1, YANG Ming2, JI Xingquan1*, SUN Donglei3, XU Bo4, WU Fucheng5(1. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China;
    2. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China;
    3. Economic &
    Technology Research Institute, State Grid Shandong Electric Power Company, Jinan 250021, Shandong, China;
    4. Electric Power Planning and Engineering Institute Co., Ltd., Beijing 100120, China;
    5. State Grid Zhucheng Power Supply Company, Zhucheng 262299, Shandong, China
  • Online:2025-10-20 Published:2025-10-17

摘要: 针对可再生能源固有的间歇性、不确定性造成系统调度决策困难的问题,提出一种计及气-热网络动态特性的多能耦合系统鲁棒机组组合模型。建立表征气网和热网动态特性的数学表达,将其融入多能耦合系统的鲁棒机组组合优化模型中;从区间、时间、空间3个角度构造多维不确定性集合,实现对风电消纳边界的灵活调整,同时利用光热电站替代部分火电机组的出力,进一步提高可再生能源利用率;通过列与约束生成算法将建立的最小-最大-最小结构的优化模型转换成具有混合整数线性规划形式的主子问题进行优化求解,提高模型求解速度。以电-气-热6-6-8系统和电-气-热118-20-16系统进行测试分析,结果表明气-热网络动态特性可以提升系统运行的经济性和可再生能源的利用率。

关键词: 多能耦合系统, 动态特性, 可再生能源, 机组组合, 列与约束生成算法

Abstract: The inherent intermittency and uncertainty of renewable energy sources had a challenge to operation decisions of the system. To solve this problem, a robust unit commitment model with multi-energy coupled system considering gas-heat network dynamics was proposed. The mathematical expressions that characterize the dynamic characteristics of gas network and thermal network were established, which were incorporated into the robust unit commitment optimization model of multi-energy coupled system. A multi-dimensional uncertainty set from the perspectives of interval, time, and space to achieve flexible adjustment of wind power absorption boundaries was established. At the same time, concentrating solar power was used to replace the output of some thermal power units to further improve the utilization rate of renewable energy. The column-and-constraint generation algorithm was employed to transform the established min-max-min structure optimization model into a mixed-integer linear programming master-subproblem form for optimization, improving the solution speed of the model. The effectiveness of the proposed model and method was verified on 6-6-8 and 118-20-16 electricity-gas-heat systems, with results indicating that the dynamic characteristics of gas and heat networks can improve the economy of system operation and the utilization rate of renewable energy.

Key words: multi-energy coupled system, dynamic characteristics, renewable energy, unit commitment, column-and-constraint generation algorithm

中图分类号: 

  • TM731
[1] LI P, YANG M, WU Q W. Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk[J]. IEEE Transactions on Sustainable Energy, 2021, 12(1):58-69.
[2] SHI J, WANG L H, LEE W, et al. Hybrid energy storage system optimization enabling very short-term wind power generation scheduling based on output feature extraction[J]. Applied Energy, 2019, 256:113915.
[3] 陈飞雄, 颜熙颖, 邵振国, 等. 综合能源系统建模与能流计算方法研究综述[J]. 高电压技术, 2024, 50(4):1376-1391. CHEN Feixiong, YAN Xiying, SHAO Zhenguo, et al. Review on modeling and energy flow calculation methods for integrated energy systems[J]. High Voltage Engineering, 2024, 50(4):1376-1391.
[4] ZHANG Y M, SUN P K, JI X Q, et al. Low-carbon economic dispatch of integrated energy systems considering extended carbon emission flow[J]. Journal of Modern Power Systems and Clean Energy, 2024, 12(6):1798-1809.
[5] WANG K, WANG C F, YAO W L, et al. Embedding P2P transaction into demand response exchange:a cooperative demand response management framework for IES[J]. Applied Energy, 2024, 367:123319.
[6] 张程, 匡宇, 陈文兴, 等. 计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行[J]. 上海交通大学学报, 2024, 58(5):669-681. ZHANG Cheng, KUANG Yu, CHEN Wenxing, et al. Low carbon economy optimization of integrated energy system considering electric vehicle charging mode and multi-energy coupling[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5):669-681.
[7] 李春燕, 唐瞻文, 汤佶元, 等. 极端灾害下基于综合需求响应的电-水-气综合能源系统负荷恢复策略[J]. 高电压技术, 2024, 50(4):1403-1415. LI Chunyan, TANG Zhanwen, TANG Jiyuan, et al. Load recovery strategy for integrated electricity-water-gas energy system based on integrated demand response under extreme disasters[J]. High Voltage Engineering, 2024, 50(4):1403-1415.
[8] 张玉敏, 孙鹏凯, 孟祥剑, 等. 基于碳势-能源价格双响应的综合能源系统低碳经济调度[J]. 电力系统自动化, 2024, 48(9):21-33. ZHANG Yumin, SUN Pengkai, MENG Xiangjian, et al. Low-carbon economic dispatching of integrated energy system based on dual response of carbon intensity and energy price[J]. Automation of Electric Power Systems, 2024, 48(9): 21-33.
[9] LI Z M, XU Y, WANG P, et al. Coordinated preparation and recovery of a post-disaster multi-energy distribution system considering thermal inertia and diverse uncertainties[J]. Applied Energy, 2023, 336:120736.
[10] 林卓然, 朱晓东, 王守相, 等. 考虑热网动态特性与碳交易的电-热综合能源系统优化调度[J]. 电力系统及其自动化学报, 2022, 34(4):64-70. LIN Zhuoran, ZHU Xiaodong, WANG Shouxiang, et al. Optimal scheduling of electric-thermal integrated energy system considering dynamic characteristics of heating network and carbon trading[J]. Proceedings of the CSU-EPSA, 2022, 34(4):64-70.
[11] CHEN X, WANG C F, WU Q W, et al. Optimal operation of integrated energy system considering dynamic heat-gas characteristics and uncertain wind power[J]. Energy, 2020, 198:117270.
[12] 张惠智, 程志韬, 贾嵘, 等. 考虑天然气动态特性的电-气综合能源系统经济优化调度[J]. 电网技术, 2021, 45(4):1304-1311. ZHANG Huizhi, CHENG Zhitao, JIA Rong, et al. Economic optimization of electric-gas integrated energy system considering dynamic characteristics of natural gas[J]. Power System Technology, 2021, 45(4):1304-1311.
[13] 林勇棋, 邵振国, 陈飞雄, 等. 基于气网划分的电-气综合能源系统分布式低碳经济调度[J]. 电网技术, 2023, 47(7):2639-2645. LIN Yongqi, SHAO Zhenguo, CHEN Feixiong, et al. Distributed low-carbon economic scheduling of integrated electricity and gas system based on gas network division[J]. Power System Technology, 2023, 47(7):2639-2645.
[14] 梅建春, 卫志农, 张勇, 等. 电-气互联综合能源系统多时间尺度动态优化调度[J]. 电力系统自动化, 2018, 42(13):36-42. MEI Jianchun, WEI Zhinong, ZHANG Yong, et al. Dynamic optimal dispatch with multiple time scale in integrated power and gas energy systems[J]. Automation of Electric Power Systems, 2018, 42(13):36-42.
[15] YANG J W, ZHANG N, KANG C Q, et al. Effect of natural gas flow dynamics in robust generation scheduling under wind uncertainty[J]. IEEE Transactions on Power Systems, 2017, 33(2):2087-2097.
[16] 徐文军, 吴梦凯, 潘夏, 等. 考虑条件风险价值和热网动态特性的电-热系统储能鲁棒优化配置[J]. 浙江电力, 2022, 41(9):50-57. XU Wenjun, WU Mengkai, PAN Xia, et al. Robust optimization configuration of energy storage in electric-thermal system con-sidering CVaR and dynamic characteristics of heat networks[J]. Zhejiang Electric Power, 2022, 41(9):50-57.
[17] WANG D, ZHI Y Q, JIA H J, et al. Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes[J]. Applied Energy, 2019, 240:341-358.
[18] 王婉璐, 杨莉, 王蕾, 等. 考虑供热网储热特性的电-热综合能源系统优化调度[J]. 电力系统自动化, 2018, 42(21):45-52. WANG Wanlu, YANG Li, WANG Lei, et al. Optimal dispatch of integrated electricity-heat energy system considering heat storage characteristics of heating network[J]. Automation of Electric Power Systems, 2018, 42(21):45-52.
[19] LI Z G, WU W C, MOHAMMAD S, et al. Combined heat and power dispatch considering pipeline energy storage of district heating network[J]. IEEE Transactions on Sustainable Energy, 2015, 7(1):12-22.
[20] 董帅, 王成福, 徐士杰, 等. 计及网络动态特性的电-气-热综合能源系统日前优化调度[J]. 电力系统自动化, 2018, 42(13):12-19. DONG Shuai, WANG Chenfu, XU Shijie, et al. Day-ahead optimal scheduling of electricity gas-heat integrated energy system considering dynamic characteristics of networks[J]. Automation of Electric Power Systems, 2018, 42(13):12-19.
[21] 张玉敏, 张旋, 吉兴全, 等. 计及电-气-热IES动态特性的输配协同机组组合[J]. 中国电机工程学报, 2022, 42(23):8576-8592. ZHANG Yumin, ZHANG Xuan, JI Xingquan, et al. Synergetic unit commitment of transmission and distribution network considering dynamic characteristics of electricity-gas-heat integrated energy system[J]. Proceedings of the CSEE, 2022, 42(23):8576-8592.
[22] 杜尔顺, 张宁, 康重庆, 等. 太阳能光热发电并网运行及优化规划研究综述与展望[J]. 中国电机工程学报, 2016, 36(21):5765-5775. DU Ershun, ZHANG Ning, KANG Chongqing, et al. Reviews and prospects of the operation and planning optimization for grid integrated concentrating solar power[J]. Proceedings of the CSEE, 2016, 36(21):5765-5775.
[23] DU E S, ZHANG N, HODGE B M, et al. Economic justification of concentrating solar power in high renewable energy penetrated power systems[J]. Applied Energy, 2018, 222(3):649-661.
[24] 崔杨, 杨志文, 仲悟之, 等. 基于成本最优的含储热光热电站与火电机组联合出力日前调度[J]. 电力自动化设备, 2019, 39(2):71-77. CUI Yang, YANG Zhiwen, ZHONG Wuzhi, et al. Day-ahead dispatch for output of combined CSP with thermal storage system and thermal power units based on minimized operation cost[J]. Electric Power Automation Equipment, 2019, 39(2):71-77.
[25] 张玉敏, 吴福成, 张少梅, 等. 计及CVaR的含光热电站的鲁棒机组组合模型[J]. 智慧电力, 2023, 51(10):62-69. ZHANG Yumin, WU Fucheng, ZHANG Shaomei, et al. Robust unit commitment model with concentrating solar power plants considering CVaR[J]. Smart Power, 2023, 51(10):62-69.
[26] 张玉敏, 孙鹏凯, 吉兴全, 等. 基于并行多维近似动态规划的综合能源系统动态经济调度[J]. 电力系统自动化, 2023, 47(4):60-68. ZHANG Yumin, SUN Pengkai, JI Xingquan, et al. Dynamic economic dispatch for integrated energy system based on parallel multi-dimensional approximate dynamic programming[J]. Automation of Electric Power Systems, 2023, 47(4):60-68.
[27] 高海淑, 张玉敏, 吉兴全, 等. 基于场景聚类的主动配电网分布鲁棒综合优化[J]. 电力系统自动化, 2020, 44(21):32-41. GAO Haishu, ZHANG Yumin, JI Xingquan, et al. Scenario clustering based distributionally robust comprehensive optimization of active distribution network[J]. Automation of Electric Power Systems, 2020, 44(21):32-41.
[28] 吉兴全, 刘健, 张玉敏, 等. 计及运行灵活性约束的综合能源系统优化调度[J]. 电力系统自动化, 2022, 46(16):84-94. JI Xingquan, LIU Jian, ZHANG Yumin, et al. Optimal dispatching of integrated energy system considering operation flexibility constraints[J]. Automation of Electric Power Systems, 2022, 46(16):84-94.
[29] WANG J H, MOHAMMAD S, LI Z Y. Security-constrained unit commitment with volatile wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23(3):1319-1327.
[1] 裴佑楠,韩学山,张玉敏,叶平峰,李竞锐. 一种计及概率风险的备用优化方法[J]. 山东大学学报 (工学版), 2023, 53(2): 143-154.
[2] 鉴庆之,孙东磊,王超凡,刘晓明,刘冬,孙毅,孙媛媛. 高比例可再生能源电网消纳及调峰灵活性评估[J]. 山东大学学报 (工学版), 2022, 52(5): 123-131.
[3] 张恒旭,高志民,曹永吉,秦昊,杨冬,马欢. 高比例可再生能源接入下电力系统惯量研究综述及展望[J]. 山东大学学报 (工学版), 2022, 52(5): 1-13.
[4] 孙东磊,孙可奇,杨金叶,曹永吉,袁振华,刘冬,张恒旭. 考虑灵活性需求的电力系统优化调度[J]. 山东大学学报 (工学版), 2022, 52(1): 120-127.
[5] 张恒旭,曹永吉,张怡,李常刚,阮佳程,TerzijaVLADIMIR. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报 (工学版), 2021, 51(5): 42-52.
[6] 李德鑫, 宗崇林, 王佳蕊, 张海锋, 刘畅, 黄大为. 计及特高压直流外送及转运合同约束的日前优化调度[J]. 山东大学学报 (工学版), 2021, 51(1): 69-75.
[7] 宋士瞻,王传勇,康文文,张健,闫红华,李鹏. 基于时序生产模拟的配电网光伏装机容量规划[J]. 山东大学学报 (工学版), 2018, 48(5): 131-136.
[8] 张恒旭,施啸寒,刘玉田,杨冬. 我国西北地区可再生能源基地对全球能源互联网构建的支撑作用[J]. 山东大学学报(工学版), 2016, 46(4): 96-102.
[9] 潘志远1, 韩学山1*, 刘超男2. 交流潮流约束下的机组组合求解[J]. 山东大学学报(工学版), 2012, 42(2): 130-137.
[10] 杨朋朋,王葵,李磊,赵兰明. 机组组合问题的两层优化研究[J]. 山东大学学报(工学版), 2011, 41(3): 167-172.
[11] 马宝东1,高宝玉2*,卢磊3,张永强2. 聚合物/表面活性剂二元体系油水乳化过程动态表征方法研究[J]. 山东大学学报(工学版), 2010, 40(4): 117-120.
[12] 高厚磊 田佳 杜强 武志刚 刘淑敏. 能源开发新技术——分布式发电[J]. 山东大学学报(工学版), 2009, 39(5): 106-110.
[13] 杨朋朋,韩学山,王 静,孟祥星 . 用拉格朗日松弛法求解概率备用解析表达的机组组合[J]. 山东大学学报(工学版), 2007, 37(2): 58-62 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[9] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[10] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .