山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 13-18.doi: 10.6040/j.issn.1672-3961.1.2014.072
浩庆波1, 牟少敏1,2, 尹传环3, 昌腾腾1, 崔文斌1
HAO Qingbo1, MU Shaomin1,2, YIN Chuanhuan3, CHANG Tengteng1, CUI Wenbin1
摘要: 为进一步改善局部支持向量机的分类效率和分类精度,提出一种改进的局部支持向量机算法。该算法对每类训练样本分别进行聚类,使用聚类生成的样本中心点集代替样本,使用改进的k最近邻算法选取测试样本的k个近邻。分别在UCI数据集和自建树皮图像数据集上对本研究算法的有效性进行测试。实验结果表明,本研究提出的算法在分类精度和效率上具有一定的优势。
中图分类号:
| [1] VAPNIK V. The nature of statistical learning theory[M]. Berlin, Heidelberg: Springer, 2000:267-287. [2] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297. [3] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167. [4] SMOLA A J, SCHLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222. [5] 邓乃扬, 田英杰. 数据挖掘中的新方法:支持向量机[M]. 北京: 科学出版社, 2004:164-185. [6] 牟少敏. 核方法的研究及其应用[D]. 北京: 北京交通大学计算机与信息技术学院, 2008:17-21. MU Shaomin. Research on kernels method and application[D]. Beijing: School of Computer and Information Technology, Beijing Jiaotong University, 2008:17-21. [7] 饶鲜, 董春曦, 杨绍全. 基于支持向量机的入侵检测系统[J]. 软件学报, 2003, 14(4):798-803. RAO Xian, DONG Chunxi, YANG Shaoquan. An intrusion detection system based on support vector machine[J]. Journal of Software, 2003, 14(4):798-803. [8] BLANZIERI E, MELGANI F. Nearest neighbor classification of remote sensing images with the maximal margin principle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6):1804-1811. [9] 尹传环. 结构化数据核函数的研究[D]. 北京: 北京交通大学计算机与信息技术学院, 2008:3-9. YIN Chuanhuan. Research on kernels for structured data[D]. Beijing: School of Computer and Information Technology, Beijing Jiaotong University, 2008:3-9. [10] LIU Q, TANG X, LU H, et al. Face recognition using kernel scatter-difference-based discriminant analysis[J]. IEEE Transactions on Neural Networks, 2006, 17(4):1081-1085. [11] WANG X, CHUNG F, WANG S. On minimum class locality preserving variance support vector machine[J]. Pattern Recognition, 2010, 43(8):2753-2762. [12] WANG H, CHEN S, HU Z, et al. Locality-preserved maximum information projection[J]. IEEE Transactions on Neural Networks, 2008, 19(4):571-585. [13] ZHANG T. Statistical behavior and consistency of classification methods based on convex risk minimization[J]. Annals of Statistics, 2004, 32(1):56-85. [14] STEINWART I. Support vector machines are universally consistent[J]. Journal of Complexity, 2002, 18(3):768-791. [15] 顾彬, 郑关胜, 王建东. 增量和减量式标准支持向量机的分析[J]. 软件学报, 2013, 24(7):1601-1613. GU Bin, ZHENG Guansheng, WANG Jiandong. Analysis for incremental and decremental standard support vector machine[J]. Journal of Software, 2013, 24(7):1601-1613. [16] BRAILOVSKY V L, BARZILAY O, SHAHAVE R. On global, local, mixed and neighborhood kernels for support vector machines[J]. Pattern Recognition Letters, 1999, 20(11):1183-1190. [17] ZAKAI A, RITOV Y. Consistency and localizability[J]. The Journal of Machine Learning Research, 2009, 10(4):827-856. [18] 尹传环, 牟少敏, 田盛丰, 等. 局部支持向量机的研究进展[J]. 计算机科学, 2012, 39(1):170-174. YIN Chuanhuan, MU Shaomin, TIAN Shengfeng, et al. Survey of recent trends in local support vector machine[J]. Computer Science, 2012, 39(1):170-174. [19] SEGATA N, BLANZIERI E. Fast and scalable local kernel machines[J]. The Journal of Machine Learning Research, 2010, 11(6):1883-1926. [20] SHEN M, CHEN J, LIN C. Modeling of nonlinear medical signal based on local support vector machine[C]//Instrumentation and Measurement Technology Conference. Singapore: IEEE, 2009:675-679. [21] YANG X, CHEN S, CHEN B, et al. Proximal support vector machine using local information[J]. Neurocomputing, 2009, 73(1):357-365. [22] CHENG H, TAN P, JIN R. Efficient algorithm for localized support vector machine[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(4): 537-549. [23] KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5):905-910. [24] ALIFERIS C F, TSAMARDINOS I, STATNIKOV A R, et al. Causal explorer: a causal probabilistic network learning toolkit for biomedical discovery[C]//Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences. Las Vegas, USA: METMBS, 2003:371-376. [25] ZHANG H, BERG A C, MAIRE M, et al. SVM-kNN:discriminative nearest neighbor classification for visual category recognition[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006:2126-2136. |
| [1] | 白琳,俱通,王浩,雷明珠,潘晓英. 面向不平衡数据的提升均衡集成学习算法[J]. 山东大学学报 (工学版), 2024, 54(4): 59-66. |
| [2] | 陈晓江,杨晓奇,陈广豪,刘伍颖. 混合BERT和宽度学习的低时间复杂度短文本分类[J]. 山东大学学报 (工学版), 2024, 54(4): 51-58. |
| [3] | 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43. |
| [4] | 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11. |
| [5] | 徐金华,罗义凯,李昱燃,李岩. 基于时频分解与深度学习的轨道客流预测[J]. 山东大学学报 (工学版), 2024, 54(2): 60-68. |
| [6] | 马坤,刘筱云,李乐平,纪科,陈贞翔,杨波. 用于意图识别的自适应多标签信息学习模型[J]. 山东大学学报 (工学版), 2024, 54(1): 45-51. |
| [7] | 于泓,杜娟,魏琳,张利. 计及行为特征的市场化用户电量数据拟合方法[J]. 山东大学学报 (工学版), 2023, 53(4): 113-119. |
| [8] | 李颖,王建坤. 基于监督图正则化和信息融合的轻度认知障碍分类方法[J]. 山东大学学报 (工学版), 2023, 53(4): 65-73. |
| [9] | 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92. |
| [10] | 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10. |
| [11] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
| [12] | 孙志巍,宋明阳,潘泽华,景丽萍. 上下文感知的判别式主题模型[J]. 山东大学学报 (工学版), 2022, 52(4): 131-138. |
| [13] | 王丽,于明仟,刘文鹏,周瑜,郑蕊蕊,贺建军. 面向类不平衡数据的K近邻偏标记学习算法[J]. 山东大学学报 (工学版), 2022, 52(3): 18-24. |
| [14] | 龚楷伦,翟婷婷,唐鸿成. 一种面向多标签分类的在线主动学习算法[J]. 山东大学学报 (工学版), 2022, 52(2): 80-88. |
| [15] | 张沁洋,李旭,姚春龙,李长吾. 结合句法依存信息的方面级情感分类[J]. 山东大学学报 (工学版), 2021, 51(2): 83-89. |
|