您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 13-18.doi: 10.6040/j.issn.1672-3961.1.2014.072

• 机器学习与数据挖掘 • 上一篇    下一篇

一种基于聚类的快速局部支持向量机算法

浩庆波1, 牟少敏1,2, 尹传环3, 昌腾腾1, 崔文斌1   

  1. 1. 山东农业大学信息科学与工程学院, 山东 泰安 271018;
    2. 山东农业大学农业大数据研究中心, 山东 泰安 271018;
    3. 北京交通大学计算机与信息技术学院, 北京 100044
  • 收稿日期:2014-03-26 修回日期:2015-01-08 出版日期:2015-02-20 发布日期:2014-03-26
  • 通讯作者: 牟少敏(1964-),男,山东泰安人,副教授,博士,主要研究方向为机器学习,模式识别,数字图像处理和信息安全.E-mail:msm@sdau.edu.cn E-mail:msm@sdau.edu.cn
  • 作者简介:浩庆波(1988-),男,山东泰安人,硕士研究生,主要研究方向为机器学习与数字图像处理.E-mail:haoqingbo4546@163.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2012FM024);国家自然科学青年基金资助项目(61105056);山东省农业重大应用技术创新课题资助项目

An algorithm of fast local support vector machine based on clustering

HAO Qingbo1, MU Shaomin1,2, YIN Chuanhuan3, CHANG Tengteng1, CUI Wenbin1   

  1. 1. School of Information Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China;
    2. Agricultural Big-Data Research Center, Shandong Agricultural University, Taian 271018, Shandong, China;
    3. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
  • Received:2014-03-26 Revised:2015-01-08 Online:2015-02-20 Published:2014-03-26

摘要: 为进一步改善局部支持向量机的分类效率和分类精度,提出一种改进的局部支持向量机算法。该算法对每类训练样本分别进行聚类,使用聚类生成的样本中心点集代替样本,使用改进的k最近邻算法选取测试样本的k个近邻。分别在UCI数据集和自建树皮图像数据集上对本研究算法的有效性进行测试。实验结果表明,本研究提出的算法在分类精度和效率上具有一定的优势。

关键词: k均值聚类, 分类, 局部支持向量机, 纹理特征, k最近邻, 核函数

Abstract: In order to further improve the classification efficiency and precision of local support vector machine, a new algorithm was proposed.The two major improvements were as follows. First, every type of training samples was clustered seperately, and the training samples were substituted for sample centers generated by clustering. Second, the k nearest neighbors of test samples were selected by using the improved k-nearest neighbor algorithm. Tests were done on UCI data sets and bark image data sets made by the proposed algorithm to verify its effectiveness. Experimental results demonstrated that this algorithm had certain superiority of classification accuracy and efficiency.

Key words: kernel function, local support vector machine, texture features, k-nearest neighbor, k-means clustering, classification

中图分类号: 

  • TP391
[1] VAPNIK V. The nature of statistical learning theory[M]. Berlin, Heidelberg: Springer, 2000:267-287.
[2] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[3] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
[4] SMOLA A J, SCHLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222.
[5] 邓乃扬, 田英杰. 数据挖掘中的新方法:支持向量机[M]. 北京: 科学出版社, 2004:164-185.
[6] 牟少敏. 核方法的研究及其应用[D]. 北京: 北京交通大学计算机与信息技术学院, 2008:17-21. MU Shaomin. Research on kernels method and application[D]. Beijing: School of Computer and Information Technology, Beijing Jiaotong University, 2008:17-21.
[7] 饶鲜, 董春曦, 杨绍全. 基于支持向量机的入侵检测系统[J]. 软件学报, 2003, 14(4):798-803. RAO Xian, DONG Chunxi, YANG Shaoquan. An intrusion detection system based on support vector machine[J]. Journal of Software, 2003, 14(4):798-803.
[8] BLANZIERI E, MELGANI F. Nearest neighbor classification of remote sensing images with the maximal margin principle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6):1804-1811.
[9] 尹传环. 结构化数据核函数的研究[D]. 北京: 北京交通大学计算机与信息技术学院, 2008:3-9. YIN Chuanhuan. Research on kernels for structured data[D]. Beijing: School of Computer and Information Technology, Beijing Jiaotong University, 2008:3-9.
[10] LIU Q, TANG X, LU H, et al. Face recognition using kernel scatter-difference-based discriminant analysis[J]. IEEE Transactions on Neural Networks, 2006, 17(4):1081-1085.
[11] WANG X, CHUNG F, WANG S. On minimum class locality preserving variance support vector machine[J]. Pattern Recognition, 2010, 43(8):2753-2762.
[12] WANG H, CHEN S, HU Z, et al. Locality-preserved maximum information projection[J]. IEEE Transactions on Neural Networks, 2008, 19(4):571-585.
[13] ZHANG T. Statistical behavior and consistency of classification methods based on convex risk minimization[J]. Annals of Statistics, 2004, 32(1):56-85.
[14] STEINWART I. Support vector machines are universally consistent[J]. Journal of Complexity, 2002, 18(3):768-791.
[15] 顾彬, 郑关胜, 王建东. 增量和减量式标准支持向量机的分析[J]. 软件学报, 2013, 24(7):1601-1613. GU Bin, ZHENG Guansheng, WANG Jiandong. Analysis for incremental and decremental standard support vector machine[J]. Journal of Software, 2013, 24(7):1601-1613.
[16] BRAILOVSKY V L, BARZILAY O, SHAHAVE R. On global, local, mixed and neighborhood kernels for support vector machines[J]. Pattern Recognition Letters, 1999, 20(11):1183-1190.
[17] ZAKAI A, RITOV Y. Consistency and localizability[J]. The Journal of Machine Learning Research, 2009, 10(4):827-856.
[18] 尹传环, 牟少敏, 田盛丰, 等. 局部支持向量机的研究进展[J]. 计算机科学, 2012, 39(1):170-174. YIN Chuanhuan, MU Shaomin, TIAN Shengfeng, et al. Survey of recent trends in local support vector machine[J]. Computer Science, 2012, 39(1):170-174.
[19] SEGATA N, BLANZIERI E. Fast and scalable local kernel machines[J]. The Journal of Machine Learning Research, 2010, 11(6):1883-1926.
[20] SHEN M, CHEN J, LIN C. Modeling of nonlinear medical signal based on local support vector machine[C]//Instrumentation and Measurement Technology Conference. Singapore: IEEE, 2009:675-679.
[21] YANG X, CHEN S, CHEN B, et al. Proximal support vector machine using local information[J]. Neurocomputing, 2009, 73(1):357-365.
[22] CHENG H, TAN P, JIN R. Efficient algorithm for localized support vector machine[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(4): 537-549.
[23] KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5):905-910.
[24] ALIFERIS C F, TSAMARDINOS I, STATNIKOV A R, et al. Causal explorer: a causal probabilistic network learning toolkit for biomedical discovery[C]//Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences. Las Vegas, USA: METMBS, 2003:371-376.
[25] ZHANG H, BERG A C, MAIRE M, et al. SVM-kNN:discriminative nearest neighbor classification for visual category recognition[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006:2126-2136.
[1] 白琳,俱通,王浩,雷明珠,潘晓英. 面向不平衡数据的提升均衡集成学习算法[J]. 山东大学学报 (工学版), 2024, 54(4): 59-66.
[2] 陈晓江,杨晓奇,陈广豪,刘伍颖. 混合BERT和宽度学习的低时间复杂度短文本分类[J]. 山东大学学报 (工学版), 2024, 54(4): 51-58.
[3] 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43.
[4] 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11.
[5] 徐金华,罗义凯,李昱燃,李岩. 基于时频分解与深度学习的轨道客流预测[J]. 山东大学学报 (工学版), 2024, 54(2): 60-68.
[6] 马坤,刘筱云,李乐平,纪科,陈贞翔,杨波. 用于意图识别的自适应多标签信息学习模型[J]. 山东大学学报 (工学版), 2024, 54(1): 45-51.
[7] 于泓,杜娟,魏琳,张利. 计及行为特征的市场化用户电量数据拟合方法[J]. 山东大学学报 (工学版), 2023, 53(4): 113-119.
[8] 李颖,王建坤. 基于监督图正则化和信息融合的轻度认知障碍分类方法[J]. 山东大学学报 (工学版), 2023, 53(4): 65-73.
[9] 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92.
[10] 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10.
[11] 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88.
[12] 孙志巍,宋明阳,潘泽华,景丽萍. 上下文感知的判别式主题模型[J]. 山东大学学报 (工学版), 2022, 52(4): 131-138.
[13] 王丽,于明仟,刘文鹏,周瑜,郑蕊蕊,贺建军. 面向类不平衡数据的K近邻偏标记学习算法[J]. 山东大学学报 (工学版), 2022, 52(3): 18-24.
[14] 龚楷伦,翟婷婷,唐鸿成. 一种面向多标签分类的在线主动学习算法[J]. 山东大学学报 (工学版), 2022, 52(2): 80-88.
[15] 张沁洋,李旭,姚春龙,李长吾. 结合句法依存信息的方面级情感分类[J]. 山东大学学报 (工学版), 2021, 51(2): 83-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[5] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[6] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[7] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[8] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[9] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[10] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .