您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (5): 66-71.

• 论文 • 上一篇    下一篇

一种ReliefF特征估计方法在无监督流形学习中的应用

谭台哲,梁应毅,刘富春   

  1. 广东工业大学计算机学院, 广东 广州 510006
  • 收稿日期:2010-04-15 出版日期:2010-10-16 发布日期:2010-04-15
  • 作者简介:谭台哲(1975-),男,山东莱阳人,副教授,博士,主要研究方向为数字图像处理,模式识别与机器学习,生物特征识别. E-mail: taizhetan@gdut.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(60974019);广东省自然科学基金资助项目(9451009001002686)

Application of ReliefF feature evaluation in un-supervised manifold learning

TAN Tai-zhe, LIANG Ying-yi, LIU Fu-chun   

  1. Faculty of Computer, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2010-04-15 Online:2010-10-16 Published:2010-04-15

摘要:

针对流形学习存在的对噪声敏感、易受缺失值影响问题以及现实世界数据的结构复杂性和稀疏程序大等问题,提出引入ReliefF特征估计,即应用ReliefF在流形学习中。实验分4种情况进行:一是不使用特征提取方法;二是仅使用ReliefF特征估计方法;三是仅使用有代表性的局部线性嵌入算法;四是使用改进算法。结果表明,改进算法得到的分类准确率分别比单纯使用ReliefF特征估计方法和局部线性算法都要高。

关键词: 特征选择, ReliefF, 流形学习, 分类

Abstract:

As regards to the noise-sensitive, vulnerable to the missing values problem, the complexity and the large sparseness of real world data, and so on, propose to introduce ReliefF feature evaluation, that is to apply it into manifold learning. The experiments are divided into four cases: one is not to use any feature selection algorithm; one is to use only ReliefF feature evaluation; one is to use only the representative Locally Linear Embedding algorithm; and the last one is to use both. Results show that the classifying accuracy rate obtained by using the improved algorithm is higher than by ReliefF or Locally Linear Embedding respectively.

Key words:  feature selection, Relieff, manifold learning, classification

[1] 唐杰烽,张佳,龙锦益. 基于全局冗余最小的快速多标签特征选择方法[J]. 山东大学学报 (工学版), 2025, 55(6): 21-34.
[2] 吴正健,吾尔尼沙·买买提,杨耀威,阿力木江·艾沙,库尔班·吾布力. 基于DRCoALTP的印刷体文档图像多文种识别方法[J]. 山东大学学报 (工学版), 2025, 55(1): 51-57.
[3] 白琳,俱通,王浩,雷明珠,潘晓英. 面向不平衡数据的提升均衡集成学习算法[J]. 山东大学学报 (工学版), 2024, 54(4): 59-66.
[4] 陈晓江,杨晓奇,陈广豪,刘伍颖. 混合BERT和宽度学习的低时间复杂度短文本分类[J]. 山东大学学报 (工学版), 2024, 54(4): 51-58.
[5] 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43.
[6] 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11.
[7] 徐金华,罗义凯,李昱燃,李岩. 基于时频分解与深度学习的轨道客流预测[J]. 山东大学学报 (工学版), 2024, 54(2): 60-68.
[8] 马坤,刘筱云,李乐平,纪科,陈贞翔,杨波. 用于意图识别的自适应多标签信息学习模型[J]. 山东大学学报 (工学版), 2024, 54(1): 45-51.
[9] 于泓,杜娟,魏琳,张利. 计及行为特征的市场化用户电量数据拟合方法[J]. 山东大学学报 (工学版), 2023, 53(4): 113-119.
[10] 李颖,王建坤. 基于监督图正则化和信息融合的轻度认知障碍分类方法[J]. 山东大学学报 (工学版), 2023, 53(4): 65-73.
[11] 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92.
[12] 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10.
[13] 许传臻,袭肖明,李维翠,孙仪,杨璐. 基于自适应多分辨率特征学习的CNV分型网络[J]. 山东大学学报 (工学版), 2022, 52(4): 69-75.
[14] 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44.
[15] 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[2] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[3] 曲延鹏,陈颂英,李春峰,王小鹏,滕书格 . 低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J]. 山东大学学报(工学版), 2006, 36(4): 16 -20 .
[4] 李辉平, 赵国群, 张雷, 贺连芳. 超高强度钢板热冲压及模内淬火工艺的发展现状[J]. 山东大学学报(工学版), 2010, 40(3): 69 -74 .
[5] 胡天亮,李鹏,张承瑞,左毅 . 基于VHDL的正交编码脉冲电路解码计数器设计[J]. 山东大学学报(工学版), 2008, 38(3): 10 -13 .
[6] 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22 -26 .
[7] 于海波,李宇,余恬,雷虹 . W波段折叠波导慢波系统的尺寸对其冷特性的影响[J]. 山东大学学报(工学版), 2008, 38(3): 90 -94 .
[8] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[9] 王伟,毛华永,李国祥,潘世艳,巩厅房,晋世强,郝胜兵 . 一种车用燃油加热器燃烧器的流场数值分析[J]. 山东大学学报(工学版), 2008, 38(3): 64 -68 .
[10] 孙宗耀,刘允刚 . 一类2维不确定非线性系统自适应输出反馈镇定[J]. 山东大学学报(工学版), 2007, 37(5): 34 -39 .