您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (3): 22-29.doi: 10.6040/j.issn.1672-3961.0.2023.098

• 机器学习与数据挖掘 • 上一篇    下一篇

基于Gromov-Wasserstein最优传输的输电线路小目标检测方法

索大翔,李波*   

  1. 天津大学管理与经济学部, 天津 300072
  • 发布日期:2024-06-28
  • 作者简介:索大翔(1986— ),男,山东泰安人,博士研究生,主要研究方向为人工智能及智慧物流. E-mail:sduhit@163.com. *通信作者简介:李波(1965— ),女,山西长治人,教授,博士生导师,博士,主要研究方向为供应链管理. E-mail:libo0410@tju.edu.cn
  • 基金资助:
    国家社科基金资助项目(21&ZD102);国家自然科学基金资助项目(72132007)

Transmission line small object detection based on Gromov-Wassertein optimal transport

SUO Daxiang, LI Bo*   

  1. College of Management and Economics, Tianjin University, Tianjin 300072, China
  • Published:2024-06-28

摘要: 针对输电线路无人机线路巡检场景中目标检测算法在处理线路缺陷、零部件缺失等小目标时性能严重下降的问题,从标签分配角度提出新的损失函数,提高小目标检测的准确性和效果。区别于传统目标检测方法,将每个目标预测框视为高斯感受野,将真实值视为高斯热图,通过计算2个高斯分布之间的距离进行标签分配;提出利用Gromov-Wassertein最优传输引导模型学习,该方法可以建立在现有的检测模型之上。对多个输电线路目标检测数据集进行试验,结果表明,采用高斯感受野和最优传输的标签分配方案在输电线路巡检中的小目标检测方面具有良好的效果。

关键词: 输电线路, 小目标检测, 深度学习, 最优传输, 标签分配

中图分类号: 

  • TP391
[1] 裴伟, 许晏铭, 朱永英, 等. 改进的SSD航拍目标检测方法[J]. 软件学报, 2019, 30(3): 738-758. PEI Wei, XU Yanming, ZHU Yongying, et al. The target detection method of aerial photography images with improved SSD[J]. Journal of Software, 2019, 30(3): 738-758.
[2] 周霞, 陈旦, 李霞. 我国供电可靠性的现状分析与展望[J].供用电, 2021, 38(1): 49-54. ZHOU Xia, CHEN Dan, LI Xia. Analysis and prospect of power supply reliability in China[J]. Distribution & Utilization, 2021, 38(1): 49-54.
[3] WU H B, XI Y P, FANG W M, et al. Damper detection in helicopter inspection of power transmission line[C] //2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control. Harbin, China: IEEE, 2014: 628-632.
[4] GUO Z, TIAN Y, MAO W. A robust faster R-CNN model with feature enhancement for rust detection of transmission line fitting[J]. Sensors, 2022, 22: 7961-7977.
[5] 李海峰, 武剑灵, 李立学. YOLOv3-ad在输电线路监控中提高小目标物体检测准确度的研究[J]. 广东电力, 2021, 34(2): 92-100. LI Haifeng, WU Jianling, LI Lixue. Research on YOLOv3-ad in improving detection accuracy of small objects in transmission line monitoring[J]. Guangdong Electric Power, 2021, 34(2): 92-100.
[6] 戚银城, 江爱雪, 赵振兵, 等. 基于改进SSD模型的输电线路巡检图像金具检测方法[J]. 电测与仪表, 2019, 56(22): 7-12. QI Yincheng, JIANG Aixue, ZHAO Zhenbing, et al. Fittings detection method in patrol images of transmission line based on improved SSD[J]. Electrical Measurement & Instrumentation, 2019, 56(22): 7-12.
[7] 邓天华, 赵曙光, 刘西钉. 基于改进 SSD 算法的输电线异物附着故障检测识别技术研究[J]. 智能电网, 2022, 12(2): 36-42. DENG Tianhua, ZHAO Shuguang, LIU Xiding. Research on detection and recognition technology of foreign object adhesion fault in transmission line based on improved SSD algorithm[J]. Smart Grid, 2022, 12(2): 36-42.
[8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C] //2017 IEEE International Conference on Computer Vision(ICCV). Venice, Italy: IEEE, 2017: 2999-3007.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C] //Proceedings of the 14th European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016: 21-37.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, USA: IEEE, 2016: 779-788.
[11] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C] //2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul, Korea: IEEE, 2019: 9626-9635.
[12] KONG T, SUN F, LIU H, et al. Foveabox: beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398.
[13] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[14] DAI J, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks[C] //Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: NIPS, 2016: 29-38.
[15] LI Z, PENG C, YU G, et al. Light-head R-CNN: in defense of two-stage object detector[EB/OL].(2017-11-23)[2023-4-15]. https://arxiv.org/abs/1711.07264.
[16] 李辉, 董燕, 刘祥, 等. 基于两阶段深度网络的输电线路异常目标检测方法[J]. 控制与决策, 2022, 37(7): 1873-1882. LI Hui, DONG Yan, LIU Xiang, et al. Transmission line abnormal object detection method based on deep network of two-stage[J]. Control and Decision, 2022, 37(7): 1873-1882.
[17] 吴军, 白梁军, 董晓虎, 等. 基于Cascade R-CNN算法的输电线路小目标缺陷检测方法[J]. 电网与清洁能源, 2022, 38(4): 19-27. WU Jun, BAI Liangjun, DONG Xiaohu, et al. Transmission line small target defect detection method based on Cascade R-CNN algorithm[J]. Power System and Clean Energy, 2022, 38(4): 19-27.
[18] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C] //Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020: 213-229.
[19] ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL].(2021-03-18)[2023-04-17]. https://arxiv.org/abs/2010.01459v1.
[20] GE Z, LIU S, LI Z, et al. OTA: optimal transport assignment for object detection[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville, TN, USA: IEEE, 2021: 303-312.
[21] CUTURI M. Sinkhorn distances: lightspeed computation of optimal transport[C] //Proceedings of the 26th International Conference on Neural Information Processing Systems. Stateline, USA: NIPS, 2013: 2292-2300.
[22] LUO W, LI Y, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C] //Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: NIPS, 2016: 4905-4913.
[23] XU C, WANG J, YANG W, et al. RFLA: Gaussian receptive field based label assignment for tiny object detection[C] //Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022: 526-543.
[24] ABDELFATTAH R, WANG X, WANG S. TTPLA: an aerial-image dataset for detection and segmentation of transmission towers and power lines[C] //Proceedings of the 15th Asian Conference on Computer Vision. Kyoto, Japan: ACCV, 2020: 17-33.
[25] 飞桨. 输电线路金具数据集[DS/OL].(2020-12-29)[2023-02-15]. https://aistudio.baidu.com/aistudio/datasetdetail/66310.
[26] ZHANG Z D, ZHANG B, LAN Z C, et al. FINet: an insulator dataset and detection benchmark based on synthetic fog and improved YOLOv5[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6006508.
[27] ZHAI Y, YANG X, WANG Q, et al. Hybrid knowledge R-CNN for transmission line multifitting detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5013312.
[28] ZHAI Y, WANG Q, GUO C, et al. CGRM: a context-based graph reasoning model for fitting detection[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2518213.
[1] 李常刚,李宝亮,曹永吉,王佳颖. 人工智能在电力系统潮流计算中的应用综述及展望[J]. 山东大学学报 (工学版), 2025, 55(5): 1-17.
[2] 索大翔,李波. 细粒度特征增强与尺寸匹配的光伏缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 9-17.
[3] 周群颖,隋家成,张继,王洪元. 基于自监督卷积和无参数注意力机制的工业品表面缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 40-47.
[4] 薛冰冰,王勇,杨维浩,王川,于迪,王旭. 基于ETC收费数据的高速公路交通流数据修复及实时预测[J]. 山东大学学报 (工学版), 2025, 55(3): 58-71.
[5] 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79.
[6] 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12.
[7] 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43.
[8] 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63.
[9] 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11.
[10] 张飞凯,夏拥军,秦剑,游溢,彭飞. 基于A*算法的输电线路组塔施工吊装路径规划方法[J]. 山东大学学报 (工学版), 2024, 54(3): 141-148.
[11] 陈晓燕,王川,齐明杰,张宁,林晓龙,霍延强,刘世杰,田源. 采用雷视融合方法的灌溉风险区异物入侵风险预警[J]. 山东大学学报 (工学版), 2024, 54(3): 115-121.
[12] 李璐,张志军,范钰敏,王星,袁卫华. 面向冷启动用户的元学习与图转移学习序列推荐[J]. 山东大学学报 (工学版), 2024, 54(2): 69-79.
[13] 高泽文,王建,魏本征. 基于混合偏移轴向自注意力机制的脑胶质瘤分割算法[J]. 山东大学学报 (工学版), 2024, 54(2): 80-89.
[14] 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪[J]. 山东大学学报 (工学版), 2024, 54(1): 100-108.
[15] 李家春,李博文,常建波. 一种高效且轻量的RGB单帧人脸反欺诈模型[J]. 山东大学学报 (工学版), 2023, 53(6): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[5] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[6] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[7] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[8] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[9] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[10] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .