您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 52-57.doi: 10.6040/j.issn.1672-3961.0.2019.154

• 能源与动力工程———制冷技术专题 • 上一篇    下一篇

基于LNG冷与燃料电池余热利用的TRCC串联系统

郭英伦1(),郗富强2,苏瑞智1,李国祥1,于泽庭1,*()   

  1. 1. 山东大学能源与动力工程学院, 山东 济南 250061
    2. 潍柴动力股份有限公司, 山东 潍坊 261061
  • 收稿日期:2019-04-02 出版日期:2019-10-20 发布日期:2019-10-18
  • 通讯作者: 于泽庭 E-mail:yinglun0408@163.com;yuzt@sdu.edu.cn
  • 作者简介::郭英伦(1995—),男,黑龙江省绥化人,硕士,研究方向为燃料电池与余热利用.E-mail:yinglun0408@163.com
  • 基金资助:
    国家重点研发计划项目(面向重型载货车用燃料电池发动机集成与控制)

TRCC series system based on LNG cold energy and fuel cellwaste heat utilization

Yinglun GUO1(),Fuqiang XI2,Ruizhi SU1,Guoxiang LI1,Zeting YU1,*()   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Weichai Power Co. Ltd., Weifang 261061, Shandong, China
  • Received:2019-04-02 Online:2019-10-20 Published:2019-10-18
  • Contact: Zeting YU E-mail:yinglun0408@163.com;yuzt@sdu.edu.cn
  • Supported by:
    国家重点研发计划项目(面向重型载货车用燃料电池发动机集成与控制)

摘要:

提出一种基于固体氧化物燃料电池(solid oxide fuel cell, SOFC)和跨临界二氧化碳循环(transcritical carbon dioxide cycle, TRCC)的联合发电系统,采用跨临界二氧化碳循环来回收SOFC的排气余热,同时利用了LNG冷量。建立该系统的数学模型,分析参数变化对系统性能的影响。结果表明,在设计条件下, SOFC、TRCC和整个系统的热效率分别为64.2%、22.4%和74.1%,系统热效率随着燃料电池入口温度增加而增加,以及水蒸气碳比的增加而降低;系统热效率随着TRCC的透平入口压力的升高而升高。

关键词: 固体氧化物燃料电池, 跨临界二氧化碳循环, 热效率, LNG冷

Abstract:

A cogeneration system based on solid oxide fuel cell (SOFC for short) and transcritical carbon dioxide cycle (TRCC for short) was proposed. The transcritial carbon dioxide cycle was used to recover the exhaust heat of the SOFC while utilizing the LNG refrigeration capacity. The mathematical model of the system was established, and the influence of parameter changes on system performance was analyzed. The results showed that under the design conditions, the thermal efficiencies of SOFC, TRCC, and the whole system were 64.2%, 22.4%, and 74.1%, respectively. The system thermal efficiency increased with the inlet temperature of the fuel cell and decreased with the increase of the steam-carbon ratio. The thermal efficiency increased as the turbine inlet pressure to the TRCC increased.

Key words: solid oxide fuel cell, transcritical carbon dioxide cycle, thermal efficiency, LNG exergy

中图分类号: 

  • TM911

图1

新型余热驱动系统 C1—空气压缩机; C2—燃料压缩机; PH1—空气预热器; PH2—燃料预热器; PH3—水蒸气预热器; M—混合器; AB—后燃烧室; GT—燃气轮机; P—泵; HE—换热器; R—回热器; HRVG—余热锅炉; T—透平"

表1

系统输入参数"

参数 取值
环境温度/℃ 25
环境压力/kPa 101.3
水碳比 2.5
燃料电池入口温度/℃ 500
电池数 5 000
透平等熵效率 0.8
泵等熵效率 0.8
燃料利用率 0.85
换热器热端端差温度/℃ 30
TRCC循环低压/kPa 4 000
TRCC循环高压/kPa 20 000
LNG输入质量流量/(kg/s) 100
LNG初始温度/℃ -161.5
LNG初始压力/kPa 101.3
LNG泵出口压力/kPa 6 000

表2

循环中各点的计算结果"

参数点 压力/kPa 温度/℃
1 101.3 25.0
2 800.0 221.7
3 101.3 25.0
4 800.0 217.8
5 101.3 25.0
6 800.0 25.1
7 800.0 241.7
8 800.0 281.5
9 800.0 255.9
10 800.0 500.0
11 800.0 650.0
12 800.0 650.0
13 800.0 809.6
14 101.3 462.5
15 101.3 295.7
16 101.3 294.0
17 101.3 282.5
18 101.3 100.0
19 20 000.0 252.5
20 4 000.0 120.2
21 4 000.0 37.6
22 4 000.0 5.3
23 20 000.0 20.5
24 20 000.0 61.3
25 101.4 -161.5
26 6 000.0 -160.0
27 6 000.0 129.7
28 6 000.0 25.0
29 4 000.0 -17.9
30 4 000.0 5.3

表3

系统计算结果"

参数 计算值
燃料压缩机耗功/kW 3 999.0
空气压缩机耗功/kW 209 412.0
燃气轮机输出功/kW 300 030.0
SOFC泵耗功/kW 2.3
CO2透平输出功/kW 41 202.0
CO2泵耗功/kW 9 166.0
LNG泵耗功/kW 1 391.0
LNG膨胀机输出功/kW 8 811.0
系统净输出功/kW 294 537.0
SOFC热效率 0.642
CO2循环热效率 0.224
系统热效率 0.741

图2

SOFC输入温度对系统的影响"

图3

燃料电池水碳比对联供系统的影响"

图4

循环高压对串联系统的影响"

1 JEONG K S , OH B S . Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle[J]. Journal of Power Sources, 2002, 105 (1): 58- 65.
doi: 10.1016/S0378-7753(01)00965-X
2 ROKNI , MASOUD . Thermodynamic analysis of SOFC (solid oxide fuel cell): stirling hybrid plants using alternative fuels[J]. Energy, 2013, 61, 87- 97.
doi: 10.1016/j.energy.2013.06.001
3 DICKS A , RAND D A J . Fuel cell systems explained[M]. New York, USA: Wiley, 2000.
4 WANG Jiangfeng , YAN Zheyuan , MA Shaolin , et al. Thermodynamic analysis of an integrated power generation system driven by solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37 (3): 2535- 2545.
doi: 10.1016/j.ijhydene.2011.10.079
5 ARSALIS A . Thermoeconomic modeling and parametric study of hybrid SOFC—gas turbine—steam turbine power plants ranging from 1.5 to 10 MWe[J]. Journal of Power Sources, 2008, 181 (2): 313- 326.
doi: 10.1016/j.jpowsour.2007.11.104
6 AKKAYA A V , SAHIN B , ERDEM H H . An analysis of SOFC/GT CHP system based on exergetic performance criteria[J]. International Journal of Hydrogen Energy, 2008, 33 (10): 2566- 2577.
doi: 10.1016/j.ijhydene.2008.03.013
7 SONG C . Fuel processing for low-temperature and high-temperature fuel cells challenges, and opportunities for sustainable development in the 21st century[J]. Catalysis Today, 2002, 77 (1): 17- 49.
8 ZHANG Shiqi , LIU Haolun , LIU Meili , et al. An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization[J]. Applied Thermal Engineering, 2017, 121, 314- 324.
doi: 10.1016/j.applthermaleng.2017.04.066
9 RANJBAR F , CHITSAZ A , MAHMOUDI S M S , et al. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell[J]. Energy Conversion and Management, 2014, 87, 318- 327.
doi: 10.1016/j.enconman.2014.07.014
10 SANCHEZ D , ESCALONA J M M D , CHACARTEGUI R , et al. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology[J]. Journal of Power Sources, 2011, 196 (9): 4347- 4354.
doi: 10.1016/j.jpowsour.2010.09.091
11 WALNUM H T , NEKS P , NORD L O , et al. Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions[J]. Energy, 2013, 59, 513- 520.
doi: 10.1016/j.energy.2013.06.071
12 郑开云. 超临界二氧化碳循环热电联产系统初步研究[J]. 分布式能源, 2017, 2 (3): 15- 19.
ZHENG Kaiyun . Preliminary investigation on supercritical carbon dioxide cycle cogeneration system[J]. Distributed Energy, 2017, 2 (3): 15- 19.
13 YAMAGUCHI H , ZHANG X R , FUJIMA K , et al. Solar energy powered rankine cycle using supercritical CO2[J]. Applied Thermal Engineering, 2006, 26 (17-18): 2345- 2354.
doi: 10.1016/j.applthermaleng.2006.02.029
14 DUAN Chengjie , WANG Jie , YANG Xiao-Yong . Features of supercritical carbon dioxide brayton cycle coupled with reactor[J]. Atomic Energy Science & Technology, 2010, 44 (11): 1341- 1348.
15 CHAN S H , LOW C F , DING O L . Energy and exergy analysis of simple solid-oxide fuel-cell power systems[J]. Journal of Power Sources, 2002, 103 (2): 188- 200.
doi: 10.1016/S0378-7753(01)00842-4
16 CHAN S H , HO H K , TIAN Y . Multi-level modeling of SOFC—gas turbine hybrid system[J]. International Journal of Hydrogen Energy, 2003, 28 (8): 889- 900.
doi: 10.1016/S0360-3199(02)00160-X
17 钟芬, 吴竺, 朱彤. 低温余热驱动的热电复合系统优化设计[J]. 中国电机工程学报, 2016, 36 (12): 3176- 3183.
ZHONG Fen , WU Zhu , ZHU Tong . Optimization design of a combined organic rankine cycle-heat pump system driven by low-grade waste heat[J]. Proceedings of the CSEE, 2016, 36 (12): 3176- 3183.
18 冯兴强.固体氧化物燃料电池系统数学建模[D].上海:上海交通大学, 2009.
FENG Xingqiang. Numerical simulation Jiaotong of solid oxide fuel cell system[D]. Shanghai: Shanghai Jiao Tong University, 2009.
19 贾俊曦.固体氧化物燃料电池传热传质模型研究[D].大连:大连理工大学, 2006.
JIA Junxi. Study of model for heat and mass transfer in solid oxide fuel cell[D]. Dalian: Dalian University of Technology, 2006.
[1] 王寒冰, 刘晓辉, 田民丽, 王桂华, 于泽庭, 纪少波. 基于SOFC的功冷联供系统热力学特性分析[J]. 山东大学学报 (工学版), 2019, 49(5): 64-71.
[2] 马宗正,邵凤翔,王新莉,杨安杰. 发动机尾气温差发电装置[J]. 山东大学学报(工学版), 2016, 46(2): 122-127.
[3] 郭德栋1,2,沙爱民3. 基于微波与磁铁耦合发热效应的融雪除冰技术[J]. 山东大学学报(工学版), 2012, 42(4): 92-97.
[4] 张玉军,张兰,蒋三平. 采用凝胶注模工艺低温合成锶掺杂的锰酸镧粉体[J]. 山东大学学报(工学版), 2009, 39(3): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[6] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[7] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[8] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[9] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[10] 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92 -95 .