您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (4): 26-31.

• 机器学习与数据挖掘 • 上一篇    下一篇

基于分类一致性的迁移学习及其在行人检测中的应用

于立萍1,2,唐焕玲1,2   

  1. 1.山东工商学院计算机科学与技术学院, 山东 烟台 264005;
    2.山东省高校智能信息处理重点实验室(山东工商学院), 山东 烟台 264005
  • 收稿日期:2013-05-14 出版日期:2013-08-20 发布日期:2013-05-14
  • 作者简介:于立萍(1971- ),女,山东烟台人,副教授,博士,主要研究方向为机器学习与计算机视觉. E-mail:yulipingguo@gmail.com
  • 基金资助:

    国家自然科学基金资助项目(61175053)

Transfer learning model based on classification consensus and  its application in pedestrian detection

YU Li-ping1,2, TANG Huan-ling1,2   

  1. 1. School of Computer Science and Technology, Shandong Institute of Business and Technology, Yantai 264005, China;
    2. Key Laboratory of Intelligent Information Processing in Universities of Shandong (Shandong Institute of Business and Technology), Yantai 264005, China
  • Received:2013-05-14 Online:2013-08-20 Published:2013-05-14

摘要:

利用迁移学习解决在特定场景下尤其是在摄像头静止的监控场景下的行人检测问题,提出基于分类一致性的学习模型。利用Boosting技术从辅助训练集中选择具有正迁移能力的样本,对样本迁移能力给出了基于辅助分类器分类一致性的熵度量方法。对比实验表明,该学习模型能够有效地提高检测率,尤其是在标记样本较少的情况下仍得到了较好的检测效果。

关键词: 分类一致性, 行人检测, 迁移学习, Boosting

Abstract:

Based on the classification consensus, a novel transfer learning model for a scene-specific pedestrian detector especially in video surveillance with stationary cameras was propose. According to boosting technology, the samples showed positive transferability in auxiliary data set were selected and added to the target data set. The entropy-based transferability measurement was derived from the consensus on the predictions of auxiliary classifications. Experimental results showed that the proposed approach could improve the detection rate, especially with the insufficient labeled data.

Key words: transfer learning, Boosting, pedestrian detection, classification consensus

中图分类号: 

  • TP181
[1] 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92.
[2] 霍兵强,周涛,陆惠玲,董雅丽,刘珊. 基于NRC和多模态残差神经网络的肺部肿瘤良恶性分类[J]. 山东大学学报 (工学版), 2020, 50(6): 59-67.
[3] 秦军,张远鹏,蒋亦樟,杭文龙. 多代表点自约束的模糊迁移聚类[J]. 山东大学学报 (工学版), 2019, 49(2): 107-115.
[4] 张红斌,邱蝶蝶,邬任重,朱涛,滑瑾,姬东鸿. 基于极端梯度提升树算法的图像属性标注[J]. 山东大学学报 (工学版), 2019, 49(2): 8-16.
[5] 李雨鑫,普园媛,徐丹,钱文华,刘和娟. 深度卷积神经网络嵌套fine-tune的图像美感品质评价[J]. 山东大学学报(工学版), 2018, 48(3): 60-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[6] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[7] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[8] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[9] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[10] 赵然杭,陈守煜 . 水资源数量与质量联合评价理论模型研究[J]. 山东大学学报(工学版), 2006, 36(3): 46 -50 .