山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (4): 26-31.
于立萍1,2,唐焕玲1,2
YU Li-ping1,2, TANG Huan-ling1,2
摘要:
利用迁移学习解决在特定场景下尤其是在摄像头静止的监控场景下的行人检测问题,提出基于分类一致性的学习模型。利用Boosting技术从辅助训练集中选择具有正迁移能力的样本,对样本迁移能力给出了基于辅助分类器分类一致性的熵度量方法。对比实验表明,该学习模型能够有效地提高检测率,尤其是在标记样本较少的情况下仍得到了较好的检测效果。
中图分类号:
| [1] | 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92. |
| [2] | 霍兵强,周涛,陆惠玲,董雅丽,刘珊. 基于NRC和多模态残差神经网络的肺部肿瘤良恶性分类[J]. 山东大学学报 (工学版), 2020, 50(6): 59-67. |
| [3] | 秦军,张远鹏,蒋亦樟,杭文龙. 多代表点自约束的模糊迁移聚类[J]. 山东大学学报 (工学版), 2019, 49(2): 107-115. |
| [4] | 张红斌,邱蝶蝶,邬任重,朱涛,滑瑾,姬东鸿. 基于极端梯度提升树算法的图像属性标注[J]. 山东大学学报 (工学版), 2019, 49(2): 8-16. |
| [5] | 李雨鑫,普园媛,徐丹,钱文华,刘和娟. 深度卷积神经网络嵌套fine-tune的图像美感品质评价[J]. 山东大学学报(工学版), 2018, 48(3): 60-66. |
|